获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
摘要 在多种疾病中都观察到了人体微生物组的改变,例如哮喘、牙龈炎、皮炎和癌症,而微生物组与人体健康之间的联系仍有许多有待研究。人工智能与丰富的微生物组数据集的融合可以让我们更好地了解微生物组在我们健康中的作用。为了获得可行的见解,必须通过提供预测解释来考虑模型的预测能力和透明度。我们结合了收集两组健康女性腿部皮肤微生物组样本的努力,开发了一种可解释的人工智能 (EAI) 方法,该方法可以准确预测表型和解释。这些解释以驱动预测的关键微生物丰度的变化来表达。我们根据腿部皮肤微生物组预测皮肤水分、受试者的年龄、绝经前/后状态和吸烟状况。与皮肤水分相关的微生物组成的关键变化可以加速健康皮肤个性化治疗的发展,而与年龄相关的微生物组成变化可能为皮肤老化过程提供见解。与吸烟和绝经状态相关的腿部微生物组特征与先前分别从口腔/呼吸道微生物组和阴道微生物组中发现的结果一致。这表明很容易获得