缩写 ADA – 自动数据分析 ASME 规范 – 美国机械工程师学会锅炉和压力容器规范 CASS – 铸造奥氏体不锈钢 CNN – 卷积神经网络 CS- 碳钢 DMW – 异种金属焊缝 DNN – 深度神经网络 DR – 检测率 EPRI- 电力研究所 FPR – 假阳性率 ISI – 在役检查 ML – 机器学习 NDE – 无损检测 ORNL – 橡树岭国家实验室 POD – 检测概率 PNNL – 太平洋西北国家实验室 ROC – 接收者操作曲线 RVUH – 反应堆容器上封头 TFC – 热疲劳裂纹 TPR – 真阳性率 UT – 超声波检测(超声波、超声波检查等)UV – UltraVision VP – VeriPhase WSS – 锻造不锈钢
定向能量沉积 (DED) 是一种增材制造 (AM) 技术,传统上仅用于有限的行业和应用,例如航天工业,其中堆积(从头开始的增材制造)具有成本效益(图 1 (a))。然而,它正在被应用于更加实际的应用,例如修复模具和涡轮叶片(图1(b))、增加耐热和耐磨等功能的涂层(图1(c))以及异种金属的增材制造(图1(d))。该系统具备熔覆(金属增材制造)能力,可替代淬火、焊接、连接、热喷涂、粉末烧结、涂层、冷喷涂等工艺,实现从切割到熔覆再到磨削的一条生产线在一台机器上完成。 ※除了上述预计的引进价格外,可能还需要工厂改造费用等。
摘要:采用异种金属丝电子束增材制造技术在不锈钢基体上混合 5、10 和 15 vol.% Ti-Al-Mo-ZV 钛合金和 CuAl9Mn2 青铜,研究了制备的合金的微观结构、相和力学性能。结果表明,含 5 vol.% 钛合金的合金形成了不同的微观结构,含 10 和 15 vol.% 钛合金的合金也形成了不同的微观结构。第一种合金的特征是结构成分为固溶体、共晶金属间化合物 TiCu 2 Al 和粗大 γ 1 -Al 4 Cu 9 。它具有增强的强度并在滑动试验中表现出稳定的氧化磨损。另外两种合金还含有由于 γ 1 -Al 4 Cu 9 热分解而出现的大花状 Ti(Cu,Al) 2 树枝状晶粒。这种结构转变导致复合材料的灾难性脆化和磨损机制从氧化变为磨料。
AWS 认证焊工 – 气体保护钨极电弧焊 (GTAW) 管道 – 不锈钢到碳钢被视为异种金属(不锈钢填充金属到碳钢母材)的 A 级管道焊工认证。这是一项动手操作的行业焊接测试,它衡量焊工在 2 英寸 Schedule 80 碳钢管上以 6G 位置焊接完好焊缝金属的技能。该测试将使用 309L 填充金属从根部焊道、填充焊道到盖面焊道进行焊接,并使用背衬气体氩气吹扫。(ASME)美国机械工程师学会 - 第 1X 节锅炉和压力容器规范和程序,管理 2 英寸管道焊接测试的资格和认证。应使用(NDT)无损检测(VT)目视检测和/或 x 射线以及引导弯曲测试来检查该测试,以确定焊接测试是否符合管理规范和程序的标准。
ASME 美国机械工程师学会 BAM 德国联邦材料研究与测试研究所 CFR 美国联邦规章 COD 裂纹张开位移 CVI 近距离目视检查 DPI 着色渗透检查 DSM 异种金属焊缝 EPRI 电力研究机构 FMEA 故障模式影响分析 HF 人为因素 IGSCC 晶间应力腐蚀开裂 ISI 在役检查 LPT 液体渗透检测 MPI 磁粉检测 NDE 无损检测(也称为 NDT 或 NDI) NDI 无损检测(也称为 NDE) NDT 无损检测(也称为 NDE) NRC 核管理委员会 OE 操作经验 PANI 工业 NDE 评估计划 PDI 性能演示研究所 PISC 钢部件检查计划 POD 检测概率 RES 核管理研究办公室 ROC 相对操作特性 SATO 速度/精度权衡 SKI 瑞典语核电督察局 TOMES 任务、操作员、机器、环境和社会模型 英国 英国 美国 美国 UT 超声波检测 VT 视觉检测
电化学技术,5,43 实验室研究,20 量级,21 巴拿马运河区,94 预测,5 点蚀,14,102-112,152 铝金属耦合排名,25 测试,5 理论考虑,33 地下,81 地下电力电缆,69 焊接材料,66 电偶耦合(另见异种金属)铝合金,4130 钢,14,23,31 铝 2024,铜,35 铝 6061,金属和合金,26,102-112 铝 7075,镉,23,32 铝 7075,铜,22,28 铝 7075,Ti-6A1-4V, 22, 102-112 铝 7075,锌,23, 32 铝 7075,304 型不锈钢,22, 110 大气,94 阴极保护,33, 67, 105, 112, 150 铜,碳钢,11, 48 铜,铁,15 铜,304 型不锈钢,16 铜,409 型不锈钢,11 铜,430 型不锈钢,11, 16 镁 AZ31 的组合,316 型不锈钢,4340 钢,6061 和 7075 铝,360 黄铜,400
摘要:通过直接沉积制备的双金属结构由于异种金属的组织和性能突然变化而存在缺陷。激光金属沉积(LMD)-电弧增材制造(WAAM)工艺可以通过沉积功能梯度材料(FGM)层(例如使用LMD的薄中间层)来缓解两种不同材料之间的缺陷,并可用于使用WAAM以较高的沉积速率和相对较低的成本制备双金属结构。本研究进行了LMD-WAAM工艺,并研究了制备的IN625-SUS304L双金属结构的微观组织。LMD-WAAM样品的FGM区的微观组织主要为细小的等轴枝晶形貌。相反,WAAM区构成了粗大的柱状枝晶形貌。LMD-WAAM样品的主要合金元素的成分随着沉积层高度而逐渐变化。 LMD-WAAM 样品的显微硬度随 Inconel 含量的增加而增加。对于 LMD-WAAM 样品,断裂发生在 25% IN625 和 0% IN625 之间的界面附近;对于 WAAM 样品,最终断裂发生在界面附近的 SUS304L 中。LMD-WAAM 样品的拉伸强度与激光功率成反比。结果表明,LMD-WAAM 样品的拉伸强度比仅使用 WAAM 制造的样品高 8%。
指南 1 - 安全设计标准 - 个人危险 指南 2 - 空间 指南 3 - 可燃性 指南 4 - 绝缘材料 指南 5 - 密封 指南 6 - 轴承 指南 7 - 互换性 指南 8 - 电气过载保护 指南 9 - 工艺 指南 10 - 电连接器 指南 11 - 安装材料、电气 指南 12 - 紧固件硬件 指南 13 - 结构焊接 指南 14 - 变压器、电感器和线圈 指南 15 - 金属、耐腐蚀性 指南 16 - 异种金属 指南 17 - 印刷电路板 指南 18 - 电子零件和材料的降额 指南 19 - 端接 指南 20 - 电气过载保护连接、内部指南 21 - 铸件指南 22 - 零件选择和控制指南 23 - 附件指南 24 - 电阻、电气互连指南 25 - 电源指南 26 - 耐电弧材料指南 27 - 电池指南 28 - 控制器指南 29 - 电子管指南 30 - 半导体设备指南 31 - 防潮袋指南 32 - 测试规定指南 33 - 电阻器指南 34 - 命名指南 35 - 可靠性指南 36 - 可访问性指南 37 - 断路器指南 38 - 石英晶体和振荡器指南 39 - 保险丝和保险丝座指南 40 - 分流器指南41 - 弹簧指南 42 - 调节表盘机构