抽象的种间嵌合体与人类多能干细胞(PSC)具有巨大的前景,可以产生人性化的动物模型并为移植提供供体器官。然而,该方法目前受到嵌合胚胎最终代表的人类细胞的限制。通过基因编辑供体人类PSC制定了不同的策略来改善嵌合主义。然而,迄今为止,如果可以通过修饰宿主胚胎来增强动物的人类嵌合,则仍然无法探索。利用种间PSC竞争模型,我们在这里发现了视黄酸诱导的基因I(RIG-I)类似受体(RLR)信号传导,一种RNA传感器,在“赢家”细胞中在共培养小鼠与人PSC之间的竞争相互作用中起重要作用。我们发现,DDX58/IFIH1-MAVS-IRF7轴的遗传失活损害了小鼠PSC的“获胜者”状态及其在共培养过程中从进化遥远的物种中超过PSC的能力。此外,通过使用MAV缺乏小鼠胚胎,我们显着改善了未修饰的供体人类细胞存活。基于物种特异性序列的比较转录组分析表明,RNA的接触依赖性人向小鼠转移可能在介导跨物种相互作用中起作用。综上所述,这些发现在细胞竞争期间建立了RNA感应和先天免疫力在“赢家”细胞中的先前未认识的作用,并为修改宿主胚胎而不是供体PSC提供了概念概念,以增强种间嵌合体。与失败者HPSC相反,关于颁布巨型股票的获胜者地位的原因知之甚少。主要文本使用人多能干细胞(HPSC)生成种间嵌合体的技术是研究人类发育的一个有前途的在体内平台,并为动物中生长人体供体器官的潜在来源提供了1,2的潜在来源。尽管在密切相关的物种3,4之间可以实现强大的嵌合体,但在进化上遥远的物种之间产生嵌合体的难度要困难得多。动物中人类细胞(例如,小鼠和猪)的低嵌合体大概是由于早期发育过程中多个异类障碍物所致,其中包括但不限于发育速度的差异,细胞粘附分子的不兼容性,细胞粘附分子的不相容性以及种间细胞竞争。通过遗传抑制人类细胞凋亡6-10,已经制定了几种改善动物胚胎中人类细胞嵌合体的策略。但是,这些策略对于在再生医学中的未来使用是不切实际的,因为改良的基因和途径主要是致癌的。通过编辑宿主胚胎来改善未修饰的供体HPSC的生存和嵌合体是首选的解决方案,但尚未探索。我们以前开发了一种种间PSC共培养系统,并在启动但不幼稚的人和小鼠PSC之间发现了竞争性相互作用,从而通过凋亡通过赢家小鼠epierblast干细胞(MEPISC)消除了失败者HPSC。HPSC中MyD88,p65或p53的遗传灭活可能会克服人鼠PSC竞争,从而改善小鼠胚胎早期的人类细胞存活和嵌合。为此,我们进行了单独培养和共同培养的Mepiscs的RNA测序(RNA-Seq)。H9
在哈佛医学院的博士后职位,学生和技术人员立场即时,学生或技术人员职位。我们的实验室重点介绍了干细胞生物学与免疫学之间的新界面,称为“茎免疫学”。我们小组的一份手稿最近被本质上被接受(在出版社中接受; 2024年11月; https://doi.org/10.21203/rs.3.rs-2469338/v1)。尽管肿瘤免疫疗法和干细胞移植的应用不断增长,但干细胞与免疫系统之间的相互作用尚不清楚。尚不清楚免疫系统如何控制干细胞。在很大程度上尚不清楚如何控制对正常或恶性细胞的免疫反应。朝着新的“茎免疫学”中的此类问题,富士崎博士的小组测试了干细胞的专门微环境是否称为干细胞生态位,是干细胞的免疫学庇护所。从理论上讲,这将屏蔽正常/恶性/移植的干细胞免受免疫攻击,以及来自细胞应激反应。在1950年代证明了睾丸和胎盘作为免疫特权部位,即使在没有免疫抑制的情况下,移植的同种异体(allo-)或异类移植物也可能会持续长期。尽管最近在各种组织中鉴定出组织的干细胞壁ni,但在免疫学环境中尚未评估小众本身。几乎不知道体细胞壁ni是否具有广泛的免疫特权。成功的博士后研究员的候选人将获得博士学位。和/或M.D.学位。我们最近证明,骨髓内的造血干细胞(HSC)壁ne可容纳独特的调节性T细胞种群,该细胞群具有易裂免疫特权(细胞干细胞22,445-453,2018;自然474(7350),216-9-9,216-9,2011)。我们在自然界中的最新手稿(2024年11月,在新闻界接受)进一步确定了高度免疫特权,高度原始的HSC和其他HSC;由高度免疫保护壁ches屏蔽,在不同的BM生态位位置。我们证明了高级一氧化氮(NO)生成的HSC对免疫攻击难治。并展现出独特的“像睡美人一样的晚期升起”,但坚固而长期的血液重建。如此高度免疫特异性,高原始的无hscs位于地层中的独特内接毛细管处,其特征是高水平的免疫接收分子CD200,原发性纤毛,原发性纤毛和分子/表型特征是血管发芽的血管发育特征。这些专门的毛细血管通过创新的纤毛蛋白IFT20/CD200/eNOS/自噬轴控制NO HIS的再生功能。毛细血管进一步维持了小裂treg的池大小,增强了无hscs的免疫特权。值得注意的是,免疫力较低,效力较低,没有低HSC在先前描述的利基成分,正弦或型H血管上共定位。这些观察结果证明了HSC和不同的BM壁ni中的新型分层结构,这既决定了再生功能和免疫耐受性。我们正在寻找对我们现在在以下方式中扩展了该创新项目:干细胞/利基调节;自我耐受; Treg生物学;不同外围器官中的干细胞;和癌症。使用多种实验方法,包括转基因动物模型,人类样品,RNA/TCR测序,空间转录组学和插入式两光子显微镜。候选人更喜欢(但不需要)在以下领域之一中具有专业知识:干细胞生物学;免疫学;癌症生物学; RNA/DNA测序; T细胞受体测序;细胞重编程;和计算生物学。