摘要:弓形虫病的病原体,弓形虫弓形虫(T. gondii),是一种人畜共患的原生动物,可以影响包括人类在内的温血动物的健康。到目前为止,一种具有完全保护的有效疫苗仍然无法访问。在这项研究中,构建了编码T. gondii组蛋白脱乙酰基酶SIR2(PVAX1-SIR2)的DNA疫苗。用于增强效能元,壳聚糖和poly(D,l-乳酸 - 糖 - 糖)酸(PLGA)用于设计带有DNA疫苗的纳米球,称为PVAX1-SIR2/CS和PVAX1-SIR2/CS和PVAX1-SIR2/PLGA纳米球。将PVAX1-SIR2质粒转染到HEK 293-T细胞中,并通过激光扫描共聚焦显微镜评估表达。然后,在实验室动物模型中评估了PVAX1-SIR2质粒,PVAX1-SIR2/CS纳米球和PVAX1-SIR2/PLGA纳米球的免疫保护。体内发现表明PVAX1-SIR2/CS和PVAX1-SIR2/PLGA纳米球可以产生混合的Th1/Th2免疫反应,如受调节的抗体和细胞因子的受调节的产生所示,成熟和组成(MHC)的表达(MHC)的表达(MHC)的表达(dccompositience)的表达(dcandrien)的表达(dcandrien)是dccompositient的表达。增殖和CD4 +
新孢子虫主要感染牛,导致牛流产,估计每年对全球经济造成 10 亿美元的损失。然而,对其生物学的研究一直被忽视,因为既定范式认为它与其近亲、广泛研究的人类病原体弓形虫几乎完全相同。通过使用第三代测序技术重新审视基因组序列、组装和注释,我们在此表明,新孢子虫基因组最初是在与弓形虫同源的假设下错误组装的。我们表明这些物种之间发生了重大染色体重排。重要的是,我们表明最初命名为 Chr VIIb 和 VIII 的染色体确实融合了,从而将新孢子虫和弓形虫的核型都减少到 13 条染色体。我们重新注释了新孢子虫基因组,揭示了 500 多个新基因。我们对非光合质体和线粒体基因组进行了测序和注释,并表明尽管顶质体基因组几乎相同,但物种和菌株之间存在高水平的基因碎片化和重组。我们的结果纠正了目前在 N. caninum 和 T. gondii 基因组数据库中广泛分布的组装伪影,更重要的是,突出了线粒体是以前被忽视的变异源,并为改变同源性范式铺平了道路,鼓励重新思考基因组作为这些病原体比较独特生物学的基础。
弓形虫是动物和人类弓形虫病的病原体。这种感染通过猫科动物粪便中释放到环境中的卵囊或摄入未煮熟的肉类传播给人类。这意味着弓形虫病是一种人畜共患疾病,而弓形虫是一种食源性病原体。此外,山羊和绵羊的慢性弓形虫病是导致反复流产并给该行业造成经济损失的原因。它也是猫和狗等宠物的健康问题。虽然有针对急性期感染的治疗方法,但它们无法永久消除寄生虫,有时耐受性不佳。为了开发更好、更安全的药物,我们需要阐明弓形虫生物学的关键方面。在这篇综述中,我们将讨论同源重组修复 (HRR) 通路在寄生虫溶解周期中的重要性,以及这些过程的组成部分如何成为新药开发计划的潜在分子靶点。从这个意义上讲,我们将描述不同的 DNA 损伤剂或 HHR 抑制剂对弓形虫生长和复制的影响。列表中包括与其他靶点相关或属于一般筛选一部分的多靶点药物,从而对可在其他场景中测试的药物进行了彻底的修订。
摘要:研究弓形虫裂解物 (TLA exo) 刺激的树突状细胞衍生外泌体与霍乱毒素混合作为佐剂,在通过两种黏膜途径 (眼部和鼻内) 免疫的小鼠中的免疫原性。BALB/c 小鼠每隔 2 周注射 3 次 TLA exo 疫苗,并测量血清中的 IgG 水平以及泪液、唾液、粪便和阴道洗液中的 IgA 水平。为观察弓形虫特异性 B1 基因的表达,用 TLA exo 或 PBS exo (未用 TLA 刺激) 免疫感染 ME49 弓形虫囊肿的小鼠,并检查其脑组织。与仅用 PBS 处理的小鼠相比,通过鼻内途径接种的小鼠引起的体液和黏膜免疫反应明显更高。此外,与 PBS 对照组相比,通过眼部途径(滴眼液)接种的小鼠血清中弓形虫特异性 IgG 和泪液和粪便中的 IgA 含量明显更高。TLA exo 疫苗接种小鼠的 B1 基因表达明显低于 PBS 或 PBS exo 疫苗接种小鼠。这些结果表明,用 TLA exo 疫苗对小鼠进行眼部免疫有可能刺激全身或局部抗体反应。这项研究还强调了滴眼液疫苗作为弓形虫鼻腔疫苗替代品的优势。
触摸羊水,劳动:无杂质(无色帽或白色帽)或无菌试验血液:K2E/K3E管(紫色帽)羊水的搁板寿命,血浆类型,血浆在室温下12小时,+4°C +4°C +4°C五天,-20