在训练阶段。可以通过在引导数据集中进行许多弱学习者来提高模型的性能。包装的一个例子是随机森林算法。合奏方法的类型•投票•行李(减少方差)•提升(减少偏见)•堆叠(改进的预测)结合了多个学习者: - 尽管不同的学习算法通常是成功的,但没有一个算法总是最准确的。现在,我们将讨论由相互补充的多个学习者组成的模型,以便通过将它们结合起来,我们获得了更高的准确性。模型组合方案: - 也有不同的方式组合多个基础学习者以生成最终输出多Expert组合: - 多Expert组合方法具有并行起作用的基础学习者。这些方法依次可以分为两者:在全局方法中,也称为学习者融合,给定输入,所有基础学习者都会生成
摘要:运动想象 (MI) 是一种无需实际使用肌肉即可想象运动任务执行的技术。当用于由脑电图 (EEG) 传感器支持的脑机接口 (BCI) 时,它可以用作人机交互的成功方法。本文使用 EEG MI 数据集评估了六种不同分类器的性能,即线性判别分析 (LDA)、支持向量机 (SVM)、随机森林 (RF) 和来自卷积神经网络 (CNN) 系列的三种分类器。该研究调查了这些分类器在静态视觉提示、动态视觉引导以及动态视觉和振动触觉 (体感) 引导的组合指导下对 MI 的有效性。还研究了数据预处理过程中滤波通带的影响。结果表明,在检测不同方向的 MI 时,基于 ResNet 的 CNN 在振动触觉和视觉引导数据上的表现都明显优于竞争分类器。事实证明,使用低频信号特征对数据进行预处理是实现更高分类准确度的更好解决方案。研究还表明,振动触觉引导对分类准确度有显著影响,而相关改进对于结构更简单的分类器尤其明显。这些发现对于基于 EEG 的 BCI 的开发具有重要意义,因为它们提供了有关不同分类器在不同使用环境中的适用性的宝贵见解。