RIKEN于2016年成立先进智能项目中心(AIP),隶属于文部科学省(MEXT):
ARP Advancing Renewable Program AVR Automatic Voltage Regulator CSCR Composite Short Circuit Ratio DFIG Doubly-Fed Induction Machine DFT Discrete Fourier Transform ESCR Equivalent Circuit Based Short Circuit Ratio GA Genetic Algorithm GFMI Grid Forming Inverter GFLI Grid Following Inverter GIH Grid Innovation Hub HSS Hyper-Spherical Search HVDC High Voltage Direct Current ISP Integrated System Plan MPM Matrix Pencil Method NEM National Electricity Market OEM Original Equipment Manufacturer PEC Power Electronic Converter PLL Phase-Locked Loop PMU Phasor Measurement Unit PoC Point of Connection PSCAD Power System Computer Aided Design RMS Root Mean Square RoCoF Rate of Change of Frequency SCR Short Circuit Ratio SynCon Synchronous Condenser TNSP Transmission Network Service Provider VSC Voltage Source Converter VSG Virtual Synchronous Generator WSCR加权短路比
训练高准确的3D检测器需要使用7个自由度的大规模3D注释,这是既易于且耗时的。因此,提出了点符号的形式,为3D检测中的实践应用提供了重要的前景,这不仅更容易且价格便宜,而且为对象定位提供了强大的空间信息。在本文中,我们从经验中发现,仅适应其3D形式并非遇到两个主要的瓶颈是不算气的:1)它未能在模型中编码强3D,而2)它由于极端的Spars sparsity而产生了低质量的pseudo pseudo Labels。为了克服这些挑战,我们引入了Point-Detr3D,这是一个弱小的半监督3D检测的教师学生框架,旨在在限制的实例注释预算中充分利用点的监督。与点 - dive不同,该点仅通过点编码器编码3D位置信息,我们提出了一个显式的位置查询初始化策略,以增强先验性。考虑到教师模型产生的遥远区域的伪标签质量低时,我们通过通过新型的跨模式可变形ROI融合(D-ROI)结合了密集的图像数据来增强探测器的感知。此外,提出了一种创新的点指导的自我监督学习技术,即使在学生模型中,也可以完全利用点的先验。与代表性的Nuscenes数据集进行了广泛的实验,证明了我们的观点 - DETR3D与前所未有的作品相比获得了显着改善。值得注意的是,只有5%的标记数据,Point-detr3d的完全超级可见的对应物的性能超过90%。
单眼3D检测(M3D)的目的是从单视图像中进行精确的3D观察定位,该图像通常涉及3D检测框的劳动密集型注释。最近已经研究了弱监督的M3D通过利用许多存在的2D注释来遵循3D注释过程,但通常需要额外的培训数据,例如LiDAR Point Clouds或多视图图像,这些数据会大大降低其在各种应用中的适用性和可用性。我们提出了SKD-WM3D,这是一个弱监督的单眼3D检测框架,利用深度插入以实现M3D,并具有单一视图图像,而无需任何3D注释或其他培训数据。SKD-WM3D中的一个关键设计是一个自我知识的蒸馏框架,它通过融合深度信息并有效地减轻单核场景中固有的深度模棱两可,从而将图像特征转换为3D类似的表示形式,而无需计算上的计算层面。此外,我们设计了不确定性感知的分离损失和梯度定位的转移调制策略,分别促进了知识获取和知识转移。广泛的实验表明,SKD-WM3D明显超过了最新的实验,甚至与许多完全监督的方法相当。
Shib Shankar Banerjee 1,#、Subhradeep Mandal 1、Injamamul Arief 1、Ramakanta Layek 2、Anik Kumar Ghosh 1、Ke Yang 3、Jayant Kumar 3、Petr Formanek 1、Andreas Fery 1、Gert Heinrich 1,4、Amit Das 1,5 * 1 德累斯顿莱布尼茨聚合物研究所 e。 V,Hohe Straße 6,德累斯顿,01069,德国 2 LUT 大学,拉赫蒂,Mukkulankatu 19,FI-15210,芬兰 3 马萨诸塞大学洛厄尔分校,先进材料中心,物理系,MA 01854,美国 4 德累斯顿工业大学,纺织机械和高性能材料技术研究所,Hohe Straße 6,德累斯顿,01069,德国 5 坦佩雷大学,工程与自然科学系,FI-33101,芬兰
ICR Consilium Chris Gardner, David Daley, Lindsey Neville Tel: +44 (0) 20 3709 5700 Email: arecor@consilium-comms.com Notes to Editors About Arecor Arecor Therapeutics plc is a globally focused biopharmaceutical company transforming patient care by bringing innovative medicines to market through the enhancement of existing therapeutic products.通过应用我们创新的专有技术平台Arestat™,我们正在开发糖尿病和其他指示中专有产品的内部投资组合,并与领先的药品和生物技术公司合作以提供治疗产品。Arestat™平台由广泛的专利组合支持。有关更多详细信息,请访问我们的网站www.arecor.com
卫星现在通常用于测量水和陆地表面的反射,因此与环境相关的参数,例如水生叶绿素浓度和陆地植被指数。对于每个卫星任务,对于所有光谱带的大气底部都需要放射线验证,并涵盖将使用卫星数据的所有典型条件。现有的网络,例如水和陆地的Radcalnet等现有网络提供了至关重要的验证信息,但是(Aeronet-OC)不涵盖所有光谱带或(Radcalnet)不涵盖所有表面类型和查看角度。在这篇文章中,我们讨论了光辐射测定法中仪器,测量方法和不确定性估计的最新进展,并提出了以下观点,即需要一个新的自动化高光谱辐射仪网络来进行多损新的水和陆地表面反射率的多效率辐射验证。描述了联合网络概念的超网络,为网络特定方面的研究论文提供了背景。该网络在其对土地和水面的共同方法方面都是独一无二的。解释了土地和水测量之间的共同方面和差异。基于对面向验证的研讨会的HyperNET数据的早期热情,我们认为,这种新的自动高光谱辐射仪网络将有助于对水和多角度的多端辐射验证和多角度土地表面反射的反射。HyperNet网络与其他测量网络具有很强的协同作用(Aeronet,
