通过产生的粒子之间的相互作用,碰撞相对论核重叠区域初始能量密度的空间不对称性转化为最终状态下粒子动量分布的不对称性。 由此产生的不对称性携带着有关碰撞过程中产生的 QCD 物质的传输特性的信息。 在对产生的粒子相对于反应平面的方位分布进行傅里叶分解时,不对称通常用 vn 系数来量化。 NA61/SHINE 有一种独特的方法可以通过弹丸观众探测器估算反应平面(详情见参考文献 [ 3 , 4 ])。 流动系数的能量依赖性尤为重要。在 RHIC 的 SPS 和束流能量扫描程序的能量下,预计中速质子定向流的斜率 dv 1 / dy 会改变其符号 [ 5 , 6 , 7 ] 。图 2 显示了 13 A 和 30 A GeV/ c 的 Pb+Pb 碰撞中 π − 和 p 的定向流以及 dv 1 / dy(中心性依赖性)。质子和带负电的介子的 v 1 ( p T ) 的形状(图 2 左)不同。质子的 v 1 ( p T ) 在整个 p T 范围内为正。带负电的介子的定向流从负值开始
8 UNGA分辨率A/RES/78/241,pp 1。9,例如,CCW/GGE.1/2023/2 Subparas 21(a)和22; CCW/MSP/2019/9(GGE确认的指导原则),Subpara。 (a)。 10 UNGA分辨率A/RES/78/241,pp 3。 11“我们的共同议程政策简介9:和平的新议程”,第1页。 25。 12关于使用某些常规武器的禁令或限制的公约,这些武器可能被视为过度伤害或具有不加区分的效果(CCW),序言。 13宣言在战争时期放弃使用爆炸性弹丸400克,圣彼得堡,1868年11月29日,圣彼得堡。 14首先出现在1899年《海牙公约》(II)的序言中;如今,《马滕斯条款》的版本已发现许多国际条约。 除了其他协议I外,还请参见有关谴责日内瓦公约的常见文章,即 第一日内瓦公约(GC I),第63条;第二公约(GC II),第62条;第三公约(GC III),第142条;第四公约(GC IV),第158条;以及其他协议II,序言,第1段。 4。 另请参见《某些常规武器公约》(1980年),序言,第1段。 5,以及《集群弹药公约》(2008年),序言,第1段。 11。 在其他条约中也可以找到 Martens条款的要素;参见《日内瓦气体协议》(1925年),序言,第1-3段;生物武器大会(1972),序言,第1段。 9;反人工矿山禁令公约(1997),序言,第1段。 8; ICC法规(1998),序言,第2段。 11。9,例如,CCW/GGE.1/2023/2 Subparas 21(a)和22; CCW/MSP/2019/9(GGE确认的指导原则),Subpara。(a)。10 UNGA分辨率A/RES/78/241,pp 3。11“我们的共同议程政策简介9:和平的新议程”,第1页。 25。12关于使用某些常规武器的禁令或限制的公约,这些武器可能被视为过度伤害或具有不加区分的效果(CCW),序言。13宣言在战争时期放弃使用爆炸性弹丸400克,圣彼得堡,1868年11月29日,圣彼得堡。14首先出现在1899年《海牙公约》(II)的序言中;如今,《马滕斯条款》的版本已发现许多国际条约。除了其他协议I外,还请参见有关谴责日内瓦公约的常见文章,即第一日内瓦公约(GC I),第63条;第二公约(GC II),第62条;第三公约(GC III),第142条;第四公约(GC IV),第158条;以及其他协议II,序言,第1段。4。另请参见《某些常规武器公约》(1980年),序言,第1段。5,以及《集群弹药公约》(2008年),序言,第1段。11。Martens条款的要素;参见《日内瓦气体协议》(1925年),序言,第1-3段;生物武器大会(1972),序言,第1段。9;反人工矿山禁令公约(1997),序言,第1段。8; ICC法规(1998),序言,第2段。11。2;以及关于禁止核武器的条约(2007年),序言,第1段。
结构性蓝色在动物中很常见,组织纳米结构和物质系统产生它们(尤其是明亮的蓝色),通常基于高度有序的纳米架构。在这项研究中,我们描述了液体尾丁略皮肤的异常明亮,无关紧要的结构蓝色,这是由更无序的散射元素带来的,这些散射元素具有先前未描述的核心 - 壳超微结构,其中涉及nano-seclets封闭圭鸟氨酸纳米纳米弹丸。我们表明,这种皮肤结构充当细胞内光子玻璃,相干散射蓝色,而密切相关的黑素化器的宽带吸收则消除了光子玻璃的典型低色饱和度。我们对黄貂鱼中皮肤超微结构和颜色的表征展示了如何利用无序系统来产生鲜艳的色调,同时说明基于鸟嘌呤的颜色的能力可能在脊椎动物的演化中很早就出现。此外,采用两种不同的光子现象的材料结构功能协会的材料结构功能关联,说明了纳米级体系结构的演变如何在更大尺寸的尺度上具有深远的影响(例如,在视觉生态学和通信中),并为颜色效应的光效率覆盖了基本的指南。
钛合金具有高强度重量比、高耐腐蚀性和高熔点等优异性能,已广泛应用于航空航天工业。然而,据推测,通过对钛合金进行涂层处理,可以进一步提高其性能,使其更耐超高速撞击。早期的实验研究表明,用 Ti/SiC 金属基纳米复合材料 (MMNC) 涂覆 Ti-6Al-4V 基材可提高复合材料的抗超高速撞击性能。涂层中 SiC 的体积分数为 7%。这些实验是使用光滑粒子流体动力学 (SPH) 建模方法模拟的。Ti-6Al-4V 基材和 Lexan 弹丸使用了 Johnson-Cook 材料模型。由于缺乏对 MMNC 的详细机械特性,因此使用了双线性弹塑性材料模型来模拟涂层。在本研究中,进行了单参数敏感性分析,以通过与实验弹坑体积的比较来了解 SPH 模型的敏感性。双线性弹塑性材料模型的参数包括弹性模量、泊松比、屈服强度、切线模量和失效应变。对于体积分数为 35% SiC 的 Ti/SiC 金属基纳米复合材料 (MMNC),这些参数的变化范围为各自基准值的 ±5% 和 ±10%,并且可以获得不同应变率下的应力-应变曲线。这些值适用于整个测试速度范围。利用敏感性分析中的参数,结果表明,当没有实验数据时,可以提高 MMNC 的 SPH 建模精度。结果还表明,双线性弹塑性材料模型可用于高应变率下的 MMNC 涂层。
本研究设计并评估了两个光纤增强的复合模型,以进行轻质弹道保护。Model One使用Kevlar(KF),Carbon(CF)和玻璃纤维(GF)的六层,并由不饱和聚酯树脂(UPS),天然橡胶(NR)和Corn Starch(CS)的混合粘合剂键入不锈钢网(CL)。型号型号具有相同的结构,但具有更高的UPS含量,可改善粘结和刚度。的机械性能,包括冲击力,硬度,拉伸强度,抗压强度和弯曲行为,对这两种模型进行了系统评估。使用从卡拉什尼科夫(AK-47)步枪发射的7.62×39毫米弹药的现场弹道测试,证明了这两种模型都成功地将弹丸限制在复合层中而没有完全渗透。X射线成像证实了复合材料的结构完整性,因为子弹还嵌入了层中。第二型模型表现出优质的结构冲击力(150 kJ/m²),抗压强度(222.07 MPa)和拉伸刚度(Young's Modulus:7.37 MPa),表现出优于第一模型,该模型表现出较高的耐能力和能量吸收能力(断裂菌株:33.3%)。结果强调了这两个模型的互补强度,这表明它们的混合设计潜力。这项研究强调了纤维增强复合材料在开发用于个人和车辆应用的具有成本效益,轻巧的弹道保护系统中的潜力。
这项研究的目的是阐明戴咬齿轮对手球运动员身体表现的影响,具体取决于他们的个人咬合接触状态。参与者是15位精英级女性手球运动员(25。7±3。2年)。咬合接触状态并将其分为两组;稳定的小组和不稳定的小组。身体健身测试由8个项目组成,评估敏捷性,爆炸能力,肌肉力量,跳跃能力和灵活性,即步骤50,启发性,三锥钻,三锥钻,药丸勺投掷,垂直跳跃,背部肌肉力量,肌肉力量,扩散腿部,腿部伸开腿和容易发生上身。这些测试是在两个条件下进行的:不戴和佩戴定制的哨兵。使用分裂图设计分析了每个测试的分数,并以咬合平衡为因素。在稳定组中,任何测试的得分都不会受到戴口罩的影响。在不稳定的群体中,穿着咬牙的小组可显着提高测试成绩,除了腿部张开和容易发生的上身拱形。这项研究的结果表明,戴咬齿轮对手球运动员身体能力的影响受到玩家的咬合接触状态的影响。在咬合接触差的运动员中,戴上咬人通过咬合咬合对身体表现产生了积极影响,主要是在敏捷性,爆炸能力,肌肉力量和跳跃能力方面产生了积极影响。但是,对于已经有良好咬合接触的运动员而言,戴上弹丸不会影响他们的身体表现。
*通讯作者,电子邮件:cyprian.mieszczynski@ncbj.gov.pl摘要摘要McChasy Code的主要目标是,通过模拟在Cryselline结构和crysefters cryselline cropters cryselline cropters和collesters的过程中,在通道(RBS/c)中记录了Rutherford反向散射光谱实验实验,该光谱实验是在频道/c/c中复制了。该代码的2.0版本提供了模拟大型频道的可能性(Ca.10 8原子)基于晶体学数据或分子动态(MD)计算而创建的任意结构。在这项工作中,我们介绍了代码的当前状态以及最近对镍(Ni)单晶形成的扩展结构缺陷(边缘位错和位错环)的研究结果。描述了两种建模扩展缺陷的方法:一种使用McChasy Code(PEIERLS-NABARRO方法)开发的,另一种是通过MD(LAMMPS代码)对Ni结构进行修改和热化获得的另一种。由局部弹丸 - 通量密度分布在缺陷周围进行了定性和定量研究。1。在过去的几十年中,许多组对不同材料的辐射缺陷进行了广泛的研究。许多作者[1-4]将卢瑟福的反向散射光谱(RBS/C)技术用作分析离子植入单晶的结构特性的标准方法[1-4]。不幸的是,缺乏适当的RBS/C光谱分析和过度简化方法的工具,通常会引起误导性结果。因此,开发一个适当的工具,可以分别针对在研究晶体中形成的各种缺陷进行详细的定量分析。McChasy V.1.0是在八十年代末在国家核研究中心开发的[5,6]。该代码的第一个版本的主要原理是通过模拟He-ions在内部旅行
可以合作并适应各种情况的AI代理的开发。此外,模仿现实的游戏体验,玩家实时沟通和策略是该项目的额外动机。疯狂的上帝的领域(此后,rotmg)是我成长的游戏,这是该项目的灵感。它的节奏非常快,涉及连续躲避数百个关节。因此,这种类型的名称是子弹地狱。这使得将重新学习学习成为一个非常有趣的选择,因为代理商必须学会避免过多的屏幕危害。rotmg游戏玩法通常以老板的战斗为中心。您要么努力击败世界上的老板,要么进入地牢,在最后,您会在最后的Chamber中遇到老板。为了复制这一点,我对自己的老板战斗进行了编程,以及三个受游戏启发的可玩代理角色。环境是一个岛屿,三个特工被限制在这里。这个竞技场的老板是一个名为“ polyphemus”的独眼巨人。他拥有基本的AI,具有一些固定的行为和攻击,稍后将详细介绍。这是三个代理:•向导:高攻击,高范围,但健康状况低。有效的玻璃大炮。•牧师:低攻击,高范围和中等健康特征。平衡的支持。•战士:高攻击,低范围和高健康志。小组的坦克。通过这种特征的组合,代理人应该有望合作克服多面体。每个代理都能够向各个方向移动,向各个方向射击,并像rotmg一样在冷静下激活其独特的特殊动作。向导可以发射高伤害弹丸,战士可以暂时提高盟友附近的盟友,而牧师可以在盟友附近治愈。
本文介绍了通过 CFD 方法从各种飞机上分离外挂物所获得的结果。本文介绍了三种 CFD 应用。第一个应用介绍了计算结果,该结果通过通用机翼-吊架-外挂物配置(Eglin 测试案例)在 0.95 马赫下的可用实验数据进行了验证。本应用使用了两种不同的商用 CFD 代码:CFD-FASTRAN(隐式欧拉求解器)和非稳态面片法求解器 USAERO,并结合了积分边界层求解程序。使用 CFD-FASTRAN 可以捕捉到外挂物分离轨迹的主要趋势。此外,仅使用非稳态面片代码,就可以在 0.3 马赫下解决燃油箱与 F-16 飞机机翼和完整飞机配置的分离问题。详细讨论了两种代码解决存储分离问题的结果和优势。在第二个应用中,研究了相同的 Eglin 测试案例,其中使用非结构化的 Ansys FLUENT 获得计算结果。此测试案例获得的 CFD 结果与实验测试结果非常吻合。本文介绍的第三项研究是关于从战斗机上投放的诱饵的独立分离分析。本研究中使用的诱饵在几何形状上与用于电子战应用的对抗弹丸非常相似,其轨迹是使用 3DOF 飞行动力学代码预测的。使用 Ansys FLUENT 输入代码的气动系数及其验证。利用气动查找表,通过 3DOF/6DOF 非定常 CFD 和 3DOF 准定常飞行动力学分析获得了诱饵的轨迹。观察到,诱饵的重心位置、尾部尺寸和释放马赫数在诱饵沿其轨迹的振荡运动中起着至关重要的作用,因此对其安全分离也起着至关重要的作用。可以看出,静态不稳定的诱饵能够沿其轨迹翻滚。无论静态稳定性如何,其运动总是由高幅度振荡组成。
在过去 30 年中,探索强相互作用理论或量子色动力学 (QCD) 的相结构一直是相对论核物理的主要目标之一 [1]。尤其是 AGS(EOS 合作 [2])、CERN 的 SPS(NA49 [3] 和 Shine 合作 [4])以及后来的 RHIC-BES 计划(STAR 合作 [5])都试图寻找解除禁闭开始的明确信号。在实验方面,未来几年,我们将利用达姆施塔特和杜布纳的新设施,即 FAIR 项目 [6] 和 NICA 项目 [7] 继续进行这项搜索。在理论方面,由于缺乏对与 QCD 相变碰撞的定量预测和高质量的数值模拟 [8],对解除禁闭开始的搜索受到困扰。虽然这听起来可能令人惊讶,但不幸的是,在 FAIR/NICA 体制下,大多数重离子碰撞输运模拟都不允许包含相变,因此最多只能提供背景动力学 [9](一个值得注意的例外是 [10])。相反,相对论流体动力学模拟可以通过在有限重化学势下加入相变来提供新的见解,因为这种能量是必需的。流体动力学模型在核碰撞模拟中的应用历史悠久 [11– 15]。这种方法的优势在于,除了局部热平衡的基本模型假设外,基本上只有具体状态方程的选择作为物理输入。在低能级,描述弹丸和靶核相互作用的单一流体的流体动力学图像早已被用来研究定向流等集体效应以及这些效应对核状态方程的依赖性(参见,例如 [13, 14, 16])。然而,在低能重离子碰撞的纯流体动力学描述中,很少分析次级粒子的光谱,一个显著的例外是 [17] 的双流体模型方法。另一方面,在高碰撞能量下,流体动力学模型被发现适用于