重复使用 存放在 White Rose Research Online 中的项目受版权保护,保留所有权利,除非另有说明。您可以下载和/或打印这些项目用于个人学习,或国家版权法允许的其他行为。出版商或其他权利持有人可能允许进一步复制和重复使用全文版本。这由 White Rose Research Online 记录中该项目的许可信息指示。
摘要:弹塑性分析是获取围岩力学特性的重要方法,但选择合理的分析方法却是一个难题。为探究围岩本构关系与屈服准则分析方法之间的差异,采用双线性本构关系与统一强度准则分析方法,对淮南煤业集团谢义矿王峰岗井−817 m 灭火材料仓处巷道围岩应力分布与变形特征进行分析,对比2种分析方法的计算结果,探讨原岩应力与支护阻力作用下巷道围岩塑性区半径与位移的演化规律。结果表明:与统一强度准则分析法相比,双线性本构关系分析法避免了中间主应力系数对结果的影响,切向应力分布曲线平滑。计算得到的隧道塑性区半径和周边位移分别为 4 365 m 和 87 373 mm,均大于统一强度准则分析方法的计算值。应力差是影响隧道围岩力学特性的主要因素,当应力差由 20.4 MPa 减小到 16.4 MPa 时,隧道塑性区半径和周边位移分别减小了 0.697 m 和 26.73 mm。研究为隧道围岩弹塑性分析方法的实际选择提供了理论参考。 关键词:双线性本构关系;弹塑性分析方法;应力差;隧道围岩;统一强度准则 1 引言
MARIA DANIELA STELESCU 1、ADRIANA STEFAN 2、MARIA SONMEZ 1、MIHAELA NITUICA 1*、MIHAI GEORGESCU 1 1 国家纺织和皮革研究与发展研究所,皮革和鞋类研究所分部,93 Ion Minulescu Str.,031215,布加勒斯特,罗马尼亚 2 国家航空航天研究所“Elie Carafoli”,220 Iuliu Maniu Blvd.,061126,布加勒斯特,罗马尼亚 摘要:本文介绍了基于乙烯-丙烯-三元共聚物橡胶和低密度聚乙烯的新型动态交联热塑性弹性体的开发,用增塑淀粉和具有化学改性表面的蒙脱石增强。在二水合氯化亚锡存在下,使用辛基苯酚甲醛树脂作为硫化剂。样品是在 Brabender Plasti-Corder 混合机上,在适当的温度和转速下,使用动态硫化方法和熔融插层技术获得的。使用特定模具和实验室规模的电动压机将获得的混合物制成具有标准尺寸的板材形式。从物理机械性能、熔体流动指数以及结构和形态的角度分析了获得的样品。观察到样品的特性受所用成分和获取方法的影响。根据所获得的特性,新的弹塑性材料可用于制鞋业(用于生产:鞋底、鞋跟、防护靴)、橡胶和塑料工业、汽车工业、农业或建筑业(制造垫圈、技术产品、软管等)。它们可以通过特定于塑料的方法轻松加工成不同的成品。
4.MARC (~arc .@alysis ~esearch ~orporatlon) 是一个通用有限元程序,用于弹性分析和具有大位移的结构的非线性静态分析。元素库包含二维和三维元素以及板和壳元素。该程序特别适用于解决弹塑性和蠕变问题。塑性行为基于各向同性、弹塑性、时间相关材料理论,具有 VCNTMiaes 屈服准则、各向同性或运动应变硬化、温度相关弹性特性和等效屈服应力。蠕变行为基于 von Mises 流动准则,各向同性行为由用户指定的等效蠕变速率定律描述。该图使用切线模量法计算塑性,使用迭代初应变法计算蠕变。
钛合金具有高强度重量比、高耐腐蚀性和高熔点等优异性能,已广泛应用于航空航天工业。然而,据推测,通过对钛合金进行涂层处理,可以进一步提高其性能,使其更耐超高速撞击。早期的实验研究表明,用 Ti/SiC 金属基纳米复合材料 (MMNC) 涂覆 Ti-6Al-4V 基材可提高复合材料的抗超高速撞击性能。涂层中 SiC 的体积分数为 7%。这些实验是使用光滑粒子流体动力学 (SPH) 建模方法模拟的。Ti-6Al-4V 基材和 Lexan 弹丸使用了 Johnson-Cook 材料模型。由于缺乏对 MMNC 的详细机械特性,因此使用了双线性弹塑性材料模型来模拟涂层。在本研究中,进行了单参数敏感性分析,以通过与实验弹坑体积的比较来了解 SPH 模型的敏感性。双线性弹塑性材料模型的参数包括弹性模量、泊松比、屈服强度、切线模量和失效应变。对于体积分数为 35% SiC 的 Ti/SiC 金属基纳米复合材料 (MMNC),这些参数的变化范围为各自基准值的 ±5% 和 ±10%,并且可以获得不同应变率下的应力-应变曲线。这些值适用于整个测试速度范围。利用敏感性分析中的参数,结果表明,当没有实验数据时,可以提高 MMNC 的 SPH 建模精度。结果还表明,双线性弹塑性材料模型可用于高应变率下的 MMNC 涂层。
期刊出版物列表: 1. Divyaprakash、Mohit Garg、Ajeet Kumar、Amitabh Bhattacharya,《流体浸没式柔性细丝的计算建模综述》,《印度科学研究所杂志》(已接受) 2. Md Intaf Alam、Ajeet Kumar,《螺旋棒的均匀伸展扭转》,《国际固体与结构杂志》,295 (2024),112817 3. Roushan Kumar、Vivek Agarwal、Ajeet Kumar,《一种获得以特殊 Cosserat 棒为模型的条带非线性弹性本构关系的计算方法》,《应用力学与工程计算机方法》,418 (2024),116553 4. Darius Diogo Barreto、Ajeet Kumar,《一种结合自由空间电能的电弹性 Kirchhoff 棒理论》,《国际固体与结构杂志》, 262-263 (2023),112045 5. Vinayak, Smriti, Ajeet Kumar,均匀应变各向异性弹塑性杆:根据杆变量确定弹塑性本构关系和屈服面,欧洲力学杂志 A/固体,98 (2023),104867 6. Raushan Singh, Abhishek Arora, Ajeet Kumar,一种用于获得具有表面能的特殊 Cosserat 杆的非线性弹性本构关系的计算框架,应用力学和工程中的计算机方法,398 (2022),115256 7. Ludwig Herrnbock, Ajeet Kumar, Paul Steinmann,双尺度离线和在线方法实现几何精确的弹塑性杆,计算力学,71 (2023),1-24 8. Vaibhav Kaushik、Ajeet Kumar、Nitya Nand Goswami、Vaishali Gode、Sudhakar Mhaskar、Yash Kamath,通过头发蓬松度量化了解椰子发油的益处,国际化妆品科学杂志,44 (2022),289-298 9. Mohit Garg、Ajeet Kumar,斯托克斯流中特殊 Cosserat 细丝运动的细长体理论,固体数学与力学,28 (2023),692-729
对电子束粉末床熔合 (PBF-EB) 和激光粉末床熔合 (PBF-LB) Inconel 718 的疲劳裂纹扩展行为进行了比较研究。PBF-EB Inconel 718 的裂纹遵循穿晶路径,扩展速度更快,而 PBF-LB 的裂纹遵循沿晶和穿晶路径的组合,其扩展速度较慢,与锻造对应物相当。PBF-EB Inconel 718 中的主疲劳裂纹在微观尺度上呈现锯齿状路径,由于加工硬化率非常低,裂纹表面附近有密集的滑移痕迹。基于裂纹尖端场的数字图像相关 (DIC) 分析,可以使用应变能密度标准成功预测 PBF-EB Inconel 718 中的疲劳裂纹锯齿路径,该标准规定裂纹扩展遵循从裂纹尖端到弹塑性边界的最小距离方向。对于 PBF-LB Inconel 718,主要的疲劳裂纹在低 Δ K 时是直的,但在中和高 Δ K 范围内发生严重偏转。初始晶间裂纹和主裂纹路径偏转之间存在明显的相关性。这表明,一旦裂纹尖端周围塑性区的累积损伤达到临界值,晶间裂纹就会形成疲劳裂纹的新前沿,导致主裂纹路径偏转。基于DIC的裂纹尖端场分析得出的弹塑性断裂力学参数rp和ΔCTOD可以定性预测PBF-LB Inconel 718的较低裂纹扩展速率。
描述了“3”ABsTnAcT 实验,揭示了 Fe-3Si 钢和普通碳钢板中缺口和裂纹前塑性区的三维特征。这些将平面应力状态定义为施加应力和板强度的函数。它们还为 DM(Dugdale - Muskhelishvili)模型作为平面应力下裂纹的试验性弹塑性解决方案提供了理论依据。描述了一种考虑加工硬化和速率敏感塑性变形的方法的改进方法。这样,无缺口拉伸性能(应力-应变曲线和面积减小)可用于计算塑性区尺寸、裂纹尖端位移和应变、裂纹延伸应力和断裂韧性,与实验结果一致。最后,该方法扩展到延性裂纹扩展,并用于计算