复杂的磁力机械耦合,该耦合控制了磁性elastomers(MRES)的材料响应(MRES)需要计算工具来协助设计过程。计算模型通常基于有限元框架,这些元素框架通常简化并理想化磁性源和相关的磁性边界条件(BCS)。但是,这些简化可能会导致实际物质行为与建模的简化,即使在定性层面也是如此。在这项工作中,我们提供了一项有关磁性BCS影响的全面研究,并证明了在整个材料结构建模策略中考虑它们的重要性。为此,我们实施了一个磁性机械框架,以模拟由理想化的远场均匀磁性源,永久磁铁,线圈系统和带有两个铁杆的电磁体产生的磁场下的软磁和硬磁MR。根据所使用的磁设置,结果在计算的局部磁截图和磁场中揭示了显着的异质性。基于材料和结构贡献的详细讨论为将来的作品提供了强大,严格且必要的建模途径。
1 ENSTA B RETAGNE , UMR CNRS 6027, IRDL, F-29200 B REST , F RANCE 2 V IBRACOUSTIC – CAE D URABILITY P REDICTION D EPARTMENT , 44474 C ARQUEFOU , F RANCE 3 N ANTES U NIVERSITÉ , E COLE C ENTRALE N ANTES , CNRS, G E M, UMR 6183, F-44000 N ANTES , F rance摘要弹性材料的特性受到成分和详细过程所产生的夹杂物的强烈影响。提出了一种方法,以根据其化学性质区分弹性体中对疲劳有害(大于几µm)的夹杂物,并使用足够的统计数据进行定量表征它们。使用三种技术并进行了比较:数字光学显微镜(OM),与能量分散X射线光谱相关的扫描电子显微镜(SEM)和X射线微计算机层析成像(µ-CT)。六种材料用于挑战该方法。除了通常的金属氧化物和碳黑色附聚物外,突出显示了三种非典型夹杂物,从而产生了特定的检测困难。与经典的阈值方法相比,开发了一个相关的图像分析过程,以自动和准确地检测获得的图像的包含物。不同夹杂物种群的形态和空间分布。µ-CT是包含物的分类和统计表征的最全面,最准确的方法。此外,可以使用反向散射电子(SEM-BSE)或数字OM获得有关包含物尺寸分布的相关数据。SEM-BSE比数字OM提供了更准确的结果。简介橡胶部分的性能与化合物中成分的分散质量有关。该分散剂取决于所用的成分以及详细过程(混合,注射和固化)1。用于橡胶零件的典型成分包括碳黑色(CB)或二氧化硅填充剂和ZnO。对成分的良好分散对于获得均匀的混合物,良好的机械性能以及批处理和批处理之间的性质的一致性很重要。此外,夹杂物和团聚物在这些材料的机械性能中起关键作用。例如,疲劳损伤通常以CB的聚集体2或在二氧化硅聚集体3或金属氧化物2,4处引发。因此,重要的是能够表征填充物分散体和橡胶化合物中的夹杂物。的确,这种分散在空间和大小上的知识允许检查混合物的质量,优化过程参数,并在微观结构和感兴趣的属性之间建立链接。*通讯作者。matthieu.le_saux@ensta-bretagne.fr在文献中已经提出了许多技术,以分析橡胶材料中成分(基本上是CB)的微或宏分散因素:•通过透射光学显微镜(OM)5,6的材料(厚度上的几微米至几千微米)观察材料的材料(厚度几英尺)的效果。观察到的较暗和较明亮的区域分别对应于CB团聚物,并在切割过程中脱离了聚集体;该方法在1960年代被用作标准(ASTM D-2663方法B)。
https://doi.org/10.26434/chemrxiv-2025-3cql6 orcid:https://orcid.org/000000-0002-4656-6056 consect content consect content content consect contem许可证:CC由4.0
液晶弹性体 (LCE) 表现出一些显著的物理特性,例如在不同性质的适当环境刺激(如热刺激)下可引起可逆的较大机械变形,这使得它们可以用作软致动器。LCE 所表现出的独特特性源于它们的各向异性微结构,其特点是嵌入聚合物网络中的液晶原分子的优先取向。LCE 设计中的一个悬而未决的问题是如何控制它们的驱动效率:液晶原分子的数量、它们如何连接到网络、有序度、交联密度是一些可控参数,然而,除了最后一个参数外,它们的空间分布一般无法调整。在本文中,我们开发了一个基于微机械的理论框架来模拟和探索网络交联密度对液晶弹性体元件机械驱动的影响。在此背景下,用于获得弹性体交联网络的光诱导聚合(光聚合)尤其令人感兴趣,它适用于精确调整材料内的交联密度分布;该技术能够获得分子级架构的 LCE,从而实现可获得驱动的最佳设计。在智能结构元件(LCE 微结构设计和优化)内正确设置交联密度排列的可能性代表了一种创建具有材料微结构编码所需驱动能力的分子级工程 LCE 元件的有趣方法。
基于可持续发展策略和实际应用要求,至关重要的是发展高强度,可回收和燃气 - 降压聚氨酯(PU)弹性体。因此,具有充分的硼烷酯键和含有磷的组的动态性弹药弹性(PU-DP 1-7),可重新加工,高性能的聚氨酯弹性体(PU-DP 1-7)。PU-DP 1 - 7的化学结构通过傅立叶变换红外光谱法(FTIR)和X射线光电子光谱(XPS)证实。pu-dp 1 - 7显示在900 nm的波长下的透射率约为60%,磷和硼元素均匀分布在其表面内,证实了统一的交联网络的形成。含磷和硼隆的组的包含PU-DP 1-7具有垂直燃烧(UL-94)V-0等级,表明所需的阻燃性。此外,PU-DP 1-7的拉伸强度为42.7 MPa,在休息时的伸长率为616.9%,由于其网络中的丰富氢键,对各种底物具有很高的粘附强度。此外,动态硼酸酯键endow pu-dp 1 - 7具有Su Perior物理回收和形状内存性能。在130℃进行热压后,改革后的PU-DP 1-7胶片显示出在休息时伸长率的恢复效率的83.6%。这项工作提出了一种综合策略,可以通过引入含磷的片段和动态的硼烯酯键来创建具有出色的机械和形状 - 内存性能,具有出色的机械和形状 - 内存性能的综合策略。
Ambidectionality是结构元素以两个相反方向超越参考状态的能力,在本质上很普遍。但是,除非使用复杂的混合构建体,否则常规软材料通常仅限于单个单向变形。我们利用了中间体自组装,聚合物链弹性和聚合诱导的应力的组合,以设计表现出两个中间酶的液晶弹性体:雪佛龙晶状体C(CSMC)和薄膜A(SMA)。诱导CSMC-SMA - 各向同性相跃迁导致微观结构中应变场的异常反转,从而导致相反的变形模式(例如,连续收缩或膨胀或右手或左手或左手的扭曲或相反的方向和高频率频率)和高频率的频率。这种式运动运动是可扩展的,可用于在宏观上产生高斯变换。s
软执行器是软机器人系统中的关键部件,将输入能量转换成力,驱动机器人系统。[1,2]与传统的刚性电机相比,软执行器具有柔顺性、可拉伸性,并表现出具有大量自由度(DOF)的连续变形。[3]它们在与环境相互作用时表现出多种变形模式,例如弯曲、扭曲或在密闭空间内调整形状。最近,研究人员利用聚合物材料开发了许多类型的软执行器,例如气动执行器[4,5]、介电弹性体执行器(DEA)、[6,7]响应凝胶[8,9]液晶聚合物[10,11]等。在这些智能材料和结构中,液晶弹性体(LCE)因其巨大的可逆驱动应变和应力而引起了广泛的兴趣。
高功率转化效率(PCE)和机械鲁棒性是有机太阳能电池(OSC)可穿戴应用的先决条件。但是,应提高当前活动系统的可伸缩性(即裂纹发作菌株(COS)<30%)。在将弹性体引入活动系统中被认为是提高可伸展性的一种简单方法,但弹性体的包含通常会导致OSC的PCE减少,由于缺乏互连的电气和机械途径,该可拉伸性的提高有限。在这项研究中,它是通过在活动层中建立共轭聚合物(D18)和弹性体(SEB)的连续连续网络来发展的,具有特殊的机械鲁棒性(具有特殊的机械鲁棒性)。证明,D18的特定比(40:60 W/W)的混合膜:SEB对于形成共连接结构至关重要,建立了良好的机械和电通道。因此,D18 0.4:SEBS 0.6 /L8-BO OSC的可伸展性(COS = 126%)比基于D18 /L8-BO(COS = 8%)的OSC高16倍(COS = 126%),而基于SEBS-rich Active Layers = 3.8 0.8 0.20%的OSC(12.13%),达到4倍的PCE(12.13%)。此外,D18 0.4:SEBS 0.6基于0.6的IS-OSC将原始PCE的86%和90%的菌株保留在50%的菌株中,分别以15%的菌株拉伸/释放循环后,证明了报告的IS-OSC中最高的机械鲁棒性。