4.MARC (~arc .@alysis ~esearch ~orporatlon) 是一个通用有限元程序,用于弹性分析和具有大位移的结构的非线性静态分析。元素库包含二维和三维元素以及板和壳元素。该程序特别适用于解决弹塑性和蠕变问题。塑性行为基于各向同性、弹塑性、时间相关材料理论,具有 VCNTMiaes 屈服准则、各向同性或运动应变硬化、温度相关弹性特性和等效屈服应力。蠕变行为基于 von Mises 流动准则,各向同性行为由用户指定的等效蠕变速率定律描述。该图使用切线模量法计算塑性,使用迭代初应变法计算蠕变。
摘要:本文全面综述了飞机静态气动弹性效应预测与修正方法的研究进展,包括气动弹性的损伤与防护等。相似条件的确定和静态气动弹性缩放建模对于获得准确的气动特性具有重要的风洞试验意义。同时,相似的刚度分布、制造材料和加工工艺与飞机结构动力学模拟密切相关。详细描述了静态气动弹性模型的结构布局,包括板式、梁式、轴承蒙皮式和全结构相似式。此外,风洞和试验技术在静态气动弹性试验中也起着重要作用。值得注意的是,计算流体动力学(CFD)和计算结构动力学(CSD)在流场气动弹性分析中的应用越来越受到研究者的重视。详细介绍了飞机气动弹性数值模拟的研究现状和关键技术。另外,本文还简要介绍了静态气动弹性预测与修正方法,特别是目前应用广泛的K值法。
本文介绍了一种利用自动化工具在概念设计过程早期考虑机翼结构刚度和气动弹性的方法。由于机翼非结构质量(如燃油负荷和控制面)的不确定性和可变性很高,因此在概念设计过程中,可以用随机模型很好地表示刚度和气动弹性。为了实现这一点,我们改进了现有的设计工具,利用基于规则的自动化设计从特定的机翼外模线生成机翼扭矩盒几何形状。对挠度和推断刚度的简单分析表明,早期概念设计选择会强烈影响结构刚度。本文讨论了设计选择的影响以及屈曲约束如何在特定示例中驱动结构重量。本文为未来进一步研究的模型做准备,包括有限元模型 (FEM),用于分析所得的模态形状和频率,以用于气动弹性分析。
15.船舶结构委员会及其成员机构赞助的补充说明 16.摘要 本文提出了一种基于固有应变理论结合有限元法预测加筋曲板焊接变形的有效方法(等效载荷法)。该方法可以预测加筋曲板焊接变形的各种模式,例如角变形、面内收缩、纵向和横向弯曲变形,并考虑按制造阶段进行的焊接顺序。等效载荷是通过积分固有应变分量来确定的,固有应变分量是在使用最高温度和约束程度计算的热影响区附近计算的。通过弹性分析计算了等效载荷下的曲板加筋焊接变形,并与实验和热弹塑性有限元分析进行了比较。用所提方法计算的加筋曲板焊接变形与试验和有限元分析结果有较好的一致性。实践证明,所提方法具有较高的效率和准确性。用所提方法可以预测实船曲型双底分段的焊接变形。本方法高效、准确,为预测结构形状复杂度较高的实船船体分段焊接变形提供了有力的解决方案。17.关键词 铝结构 海洋结构 铝设计 铝加工
15. 船舶结构委员会及其成员机构赞助的补充说明 16. 摘要 本文提出了一种基于固有应变理论和有限元法的加筋曲板焊接变形预测方法(等效载荷法)。该方法可以预测加筋曲板焊接变形的各种模式,例如考虑按制造阶段进行的焊接顺序的角变形、面内收缩、纵向和横向弯曲变形。等效载荷是通过积分固有应变分量来确定的,固有应变分量是在使用最高温度和约束程度计算的热影响区附近计算的。用弹性分析计算了等效载荷作用下的曲线加筋板焊接变形,并与试验和热弹塑性有限元分析进行了比较。用所提方法计算的加筋曲板焊接变形与试验和密集有限元分析的结果有很好的一致性。事实证明,所提方法具有很高的效率和准确性。该方法可以预测实际船舶的弧形双底分段的焊接变形。该方法高效、准确,为预测结构形状复杂程度较高的实际船舶分段焊接变形提供了有力的解决方案。17. 关键词 铝结构,海洋结构,铝设计,铝加工
该项目的目标是制定有限元分析在船舶结构设计和评估中的应用指导说明。当前的设计和评估实践包括广泛使用强大的数值建模技术,如果应用不当,可能会导致分析结果的质量和可靠性差异很大。该项目的目标是为审查与 FEA 质量保证 (QA) 相关的方面提供指导,包括进行 FEA、软件和人为因素所使用的程序。2.0 背景 2.1 船舶结构委员会 (SSC387) 于 1996 年处理了这个问题,然而,在过去的 15 年中,有限元建模的使用在以下方面取得了进展:• 可用工具(例如自动网格划分、与绘图/实体建模工具的交互),• 考虑的材料(钢、铝、塑料、复合材料、非线性(屈服后)行为),• 负载条件(例如流体结构相互作用、碰撞、爆炸模拟),• 分析类型(隐式与显式(时间域)建模),• 元素公式(非线性、混合和接触元素),以及• 结构几何形状(裂纹尖端元素、连接和焊件、接触/滑动部件装配)。2.2 此前 SSC 对此主题的处理以及其他行业指南提供的指导侧重于: • 船舶结构的线性弹性分析, • 仅限于自然频率(模态)分析的动态分析, • 结构组件而非连接和整船模型,不处理子结构, • 各向同性材料, • 局部载荷而非整船载荷, • 基准建模工具,以及 • 错误检查程序的开发。2.3 为了产生高质量的有限元分析结果,需要对模型准备和解释进行指导,以便从当前先进的数值建模工具中开发出一致的质量水平。本指南可以考虑: • 规划和准备, • 工程模型的开发, • 有限元模型的构建, • 有限元模型的执行,以及 • 结果的解释 3.0 要求
能够对系统的结构性能和可靠性进行评估。与叶片振动监测相关的主要技术挑战之一源于复杂的动力学和内在的不确定性,这使得基于模拟的方法难以实现。因此,振动特性的数值研究应基于可靠且有效的气动弹性模型,该模型应能够将结构和气动部分耦合在一起。前者通常用等效梁单元建模,而 WT 的典型气动建模方法包括叶片单元动量 (BEM) 理论、执行器线模型、升力板和涡流模型以及计算流体动力学 (CFD) 方法。执行器线 6 以及升力板和涡流模型 7 旨在提供改进的尾流建模;然而,它们都各有弱点,前者由于需要求解 Navier-Stokes 方程而计算量大,而后者由于方法的内在奇异性而存在发散问题。8 另一方面,CFD 分析受到了广泛关注,尽管目前显示它对于大攻角不可靠。9 此外,它们的适用性仍然受到计算需求增加的限制。10 因此,BEM 理论已成为预测 WT 叶片上气动载荷的标准工业实践,这归功于它能够使用翼型气动数据提供准确且计算效率高的结果。除了上述成熟的气动模型外,还提出了各种替代方法。Zhang 和 Huang 10 对此进行了广泛的综述研究,重点关注不稳定性问题、复杂的流入效应、结构非线性以及 CFD 和气动水弹性分析。仅就气动部分而言,Lee 等人提出了使用改进的条带理论进行气动弹性分析。11 同时还提出了一种基于谐波平衡法的气动弹性方案,12 显著缩短了计算时间,并且比标准 BEM 方法更为稳健。通过使用三维模型进行数值研究,进一步研究了冰积对叶片气动行为的影响。 13最后,Peeters 等人。39 最后,一类更复杂的方法涉及基于 CFD 的分析,9,14 事实证明,这些方法与标准工业工具(例如疲劳、空气动力学、结构和湍流 (FAST))具有合理的一致性。关于结构模型,还提出了超出标准方法(包括等效梁的构造)15 的方法,包括薄壁梁模型 16 ,它可以适应大型叶片中遇到的大多数特征,例如任意层压板铺层和剪切变形,以及考虑动态载荷引起的渐进损坏的模型,17 等等。18 对叶片的壳和固体有限元 (FE) 模型之间的静态行为进行了有趣的比较研究。工业应用中的大部分标准实践都包含在大量可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型无法考虑大位移对响应本身或风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型柔性叶片则并非如此,23 它们通常会经历显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由于几何非线性而产生的耦合效应变得越来越重要。24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代 (HAWC2) 27 提供了为数不多的非线性商业模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决 WT 叶片大位移问题的另一种方法是几何精确梁理论 (GEBT),28,29 本质上提供了变形梁几何的精确表示,这对于较大的 WT 来说越来越重要。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。该方法被证明具有显著的计算效率,从而能够与结构监测数据相结合以供实时应用。31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出一种用于 WT 叶片的非线性气动弹性模型。一类替代方法可以减轻计算成本的增加,即使用降阶模型 33,34,这可能很好地基于非线性法向模式 (NNM) 的使用。35 一些最近的研究集中在叶片响应的耦合行为上,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数增强。
能够对系统的结构性能和可靠性进行评估。与叶片振动监测相关的主要技术挑战之一源于复杂的动力学和内在的不确定性,这使得基于模拟的方法难以实现。因此,振动特性的数值研究应基于可靠、有效的气动弹性模型,该模型应能够将结构部分和气动部分耦合。前者通常用等效梁单元建模,而 WT 的典型气动建模方法包括叶片单元动量 (BEM) 理论、执行器线模型、升力面板和涡流模型以及计算流体动力学 (CFD) 方法。执行器线 6 以及升力面板和涡流模型 7 旨在提供改进的尾流建模;然而,两者都各有弱点,前者需要求解 Navier-Stokes 方程,计算量大;后者由于方法的内在奇异性而存在发散问题。8 另一方面,CFD 分析正受到广泛关注,尽管目前已发现其对于大攻角不可靠。9 此外,由于计算需求的增加,它们的适用性仍然受到限制。10 因此,BEM 理论已成为预测 WT 叶片上气动载荷的标准工业实践,这归功于它能够使用翼型气动数据提供准确且计算效率高的结果。除了上述成熟的气动模型外,还提出了各种替代方法。 Zhang 和 Huang 10 对此进行了广泛的综述研究,重点关注了不稳定性问题、复杂流入效应、结构非线性以及 CFD 和气动水弹性分析。仅就气动部分而言,Lee 等人 11 提出了使用改进的条带理论进行气动弹性分析,同时还提出了一种基于谐波平衡法的气动弹性方案,12 大大减少了计算时间,并且证明比标准 BEM 方法更为稳健。13 通过使用三维模型进行数值研究,进一步研究了结冰对叶片气动行为的影响。一类更复杂的方法是基于 CFD 的分析,9,14 事实证明,这种方法与标准工业工具(如疲劳、空气动力学、结构和湍流 (FAST))具有合理的一致性。对于结构模型,除了标准方法(包括等效梁的构造)之外,还提出了其他方法,15包括可以适应大型叶片中遇到的大多数特征的薄壁梁模型 16,例如任意层压板铺层和剪切变形,以及考虑动态载荷引起的渐进损坏的模型,17 等等。最后,Peeters 等人 18 对叶片的壳和固体有限元 (FE) 模型之间的静态行为进行了有趣的比较研究。工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型无法考虑大位移对响应本身和风荷载的影响。虽然这些影响对于小型叶片来说可以忽略不计,但对于大型柔性叶片来说并非如此,23 它们通常会经历显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由几何非线性引起的耦合效应变得越来越重要。24,25 在各种内部代码 26 和气动弹性建模软件中,水平轴风力涡轮机模拟代码第二代 (HAWC2) 27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT),28,29 它本质上提供了变形梁几何的精确表示,这对于大型风力涡轮机来说越来越重要。然而,与典型的基于位移的 GEBT 公式解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。31 该公式最近才实施和验证 32,随后进一步与 BEM 理论融合,开发了 WT 叶片的非线性气动弹性模型。一类缓解计算成本增加的替代方法是使用降阶模型 33,34,这可能很好地基于非线性法向模式 (NNM) 的使用。35 一些最近的研究集中在叶片响应的耦合行为上,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。 39 最后,如任意层压板铺层和剪切变形,以及考虑动态载荷引起的渐进损伤的模型,17 等等。最后,Peeters 等人 18 对叶片的壳和固体有限元 (FE) 模型的静态行为进行了有趣的比较研究。工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型不能考虑大位移对响应本身或风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会出现显着的几何非线性。此外,随着当今风力涡轮机尺寸的增大,叶片也变得更加灵活,几何非线性引起的耦合效应也变得越来越重要。24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代 (HAWC2) 27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT),28,29 它本质上提供了变形梁几何的精确表示,这对于较大的风力涡轮机来说越来越重要。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,如任意层压板铺层和剪切变形,以及考虑动态载荷引起的渐进损伤的模型,17 等等。最后,Peeters 等人 18 对叶片的壳和固体有限元 (FE) 模型的静态行为进行了有趣的比较研究。工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型不能考虑大位移对响应本身或风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会出现显着的几何非线性。此外,随着当今风力涡轮机尺寸的增大,叶片也变得更加灵活,几何非线性引起的耦合效应也变得越来越重要。24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代 (HAWC2) 27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT),28,29 它本质上提供了变形梁几何的精确表示,这对于较大的风力涡轮机来说越来越重要。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,17 等等。最后,Peeters 等人 18 对叶片的壳和固体有限元 (FE) 模型的静态行为进行了有趣的比较研究。工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型无法考虑大位移对响应本身或风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会出现显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由于几何非线性引起的耦合效应变得越来越重要。 24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代(HAWC2)27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT) 28,29,这对于较大的风力涡轮机来说越来越重要,它本质上提供了变形梁几何的精确表示。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,17 等等。最后,Peeters 等人 18 对叶片的壳和固体有限元 (FE) 模型的静态行为进行了有趣的比较研究。工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型无法考虑大位移对响应本身或风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会出现显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由于几何非线性引起的耦合效应变得越来越重要。 24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代(HAWC2)27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT) 28,29,这对于较大的风力涡轮机来说越来越重要,它本质上提供了变形梁几何的精确表示。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型无法考虑大位移对响应本身和风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会经历显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由几何非线性引起的耦合效应变得越来越重要。 24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代(HAWC2)27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT) 28,29,这对于较大的风力涡轮机来说越来越重要,它本质上提供了变形梁几何的精确表示。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型无法考虑大位移对响应本身和风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会经历显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由几何非线性引起的耦合效应变得越来越重要。 24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代(HAWC2)27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT) 28,29,这对于较大的风力涡轮机来说越来越重要,它本质上提供了变形梁几何的精确表示。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,大型柔性叶片则不然,23 这类叶片通常存在显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由几何非线性引起的耦合效应变得越来越重要。24,25 在各种内部代码 26 和气动弹性建模软件中,水平轴风力涡轮机模拟代码第二代 (HAWC2) 27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT),28,29 它本质上提供了变形梁几何的精确表示,这对于大型风力涡轮机来说越来越重要。然而,解决典型的基于位移的 GEBT 公式的缺点之一是计算成本增加。对此问题的一种补救措施是实施混合形式公式,30 已广泛应用于飞机机翼应用。31 该公式最近才实施并得到验证 32,随后进一步与 BEM 理论融合,开发出一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数增强。该方法被证明可以实现显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,大型柔性叶片则不然,23 这类叶片通常存在显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由几何非线性引起的耦合效应变得越来越重要。24,25 在各种内部代码 26 和气动弹性建模软件中,水平轴风力涡轮机模拟代码第二代 (HAWC2) 27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT),28,29 它本质上提供了变形梁几何的精确表示,这对于大型风力涡轮机来说越来越重要。然而,解决典型的基于位移的 GEBT 公式的缺点之一是计算成本增加。对此问题的一种补救措施是实施混合形式公式,30 已广泛应用于飞机机翼应用。31 该公式最近才实施并得到验证 32,随后进一步与 BEM 理论融合,开发出一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数增强。该方法被证明可以实现显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,然而,与典型的基于位移的 GEBT 公式解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。31 该公式最近才实施和验证 32,随后进一步与 BEM 理论融合,开发了 WT 叶片的非线性气动弹性模型。一类缓解计算成本增加的替代方法是使用降阶模型 33,34,这可能很好地基于非线性法向模式 (NNM) 的使用。35 一些最近的研究集中在叶片响应的耦合行为上,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。 39 最后,然而,与典型的基于位移的 GEBT 公式解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。31 该公式最近才实施和验证 32,随后进一步与 BEM 理论融合,开发了 WT 叶片的非线性气动弹性模型。一类缓解计算成本增加的替代方法是使用降阶模型 33,34,这可能很好地基于非线性法向模式 (NNM) 的使用。35 一些最近的研究集中在叶片响应的耦合行为上,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。 39 最后,