战略导弹防御或反弹道导弹 (ABM) 系统被认为是通过拒止资产进行威慑。关于这些系统是否稳定或破坏核大国之间的力量平衡的争论仍未解决。本文以东西方关系为例,重点关注北约的导弹防御努力,回顾了这种影响。本文分为两部分。第一部分是历史部分,回顾了冷战期间的东西方关系,基于战略武库、危机事件和与导弹防御发展相关的军备控制谈判。第二部分回顾了 2000 年以来的发展,再次使用了战略武库、危机事件、军备控制谈判以及北约和俄罗斯联邦的导弹防御比较。历史分析和当前形势分析都没有显示 ABM 系统具有显著的升级特性。特别是从历史角度来看,ABM 系统似乎具有稳定作用。然而,导弹防御的每一次发展都描绘出一幅未来的图景:对手的技术优势可能超过进攻能力,从而削弱一个国家的进攻能力。目前的情况详细表明,这样的未来从未形成,在可预见的未来也可能不会形成。它表明防御者在核攻击面前的劣势有多么巨大。将拦截器放置在合适的位置存在物理限制
法国 德国 意大利 日本 英国 美国 澳大利亚 比利时 丹麦 卢森堡 荷兰 挪威 西班牙 奥地利 芬兰 新西兰 瑞典 希腊 爱尔兰 葡萄牙 瑞士 阿根廷 匈牙利 冰岛 巴西 俄罗斯 南非 土耳其 捷克共和国 波兰 乌克兰 韩国 保加利亚 印度
BAE Systems 正在通过创新解决方案推进核威慑任务,以满足传统 MMIII ICBM 武器系统和未来地基战略威慑 (GBSD) 的需求。我们为 ICBM 企业带来经过验证的创新建模实践和方法,利用我们的基于模型的系统工程 (MBSE) 功能来支持和改进采购、运营和维持绩效,以推进和现代化国家 ICBM 的管理。BAE Systems 使用 MBSE 架构和流程进行系统设计分析以及大型复杂系统的需求开发和管理。我们的 MBSE 方法可实现 ICBM 系统系统 (SoS)、子系统和组件的连续端到端数字表示。我们启用了完整的系统级基于模型的数字线程,支持一致的建模、仿真和分析 (MS&A),提供系统运行方式的完整图景。这种连续性为美国空军在“民兵”III 洲际弹道导弹和 GBSD 任务及系统生命周期中提供了更有效、更高效的决策。
BAE 系统公司正在通过创新解决方案推进核威慑任务,以满足传统 MMIII 洲际弹道导弹武器系统和未来陆基战略威慑 (GBSD) 的需求。我们为洲际弹道导弹企业带来了经过验证的创新建模实践和方法,利用我们的基于模型的系统工程 (MBSE) 功能来支持和改进采购、运营和维持绩效,从而推进和现代化国家洲际弹道导弹的管理。BAE 系统公司使用 MBSE 架构和流程进行系统设计分析以及大型复杂系统的需求开发和管理。我们的 MBSE 方法可实现洲际弹道导弹系统 (SoS)、子系统和组件的连续端到端数字表示。我们启用了完整的系统级基于模型的数字线程,支持一致的建模、仿真和分析 (MS&A),提供系统运行方式的完整画面。这种连续性使美国空军能够在 Minuteman III 洲际弹道导弹和 GBSD 任务和系统生命周期中做出更有效、更高效的决策。
摘要 科技进步的蓬勃兴起和军事变革的风起云涌推动着武器装备不断进步,高功率微波(HPM)武器改变了传统枪炮、导弹等动能武器的毁伤模式,具有“改变游戏规则”的巨大优势。高功率微波武器外弹道研究对武器设计研制、性能指标验证具有理论支撑,也是高功率微波武器射击应用的重要基础。通过研究HPM武器与目标的耦合机理,给出HPM武器的外弹道描述。根据外弹道描述,总结HPM与传统武器在定义、精度、空间弹道、空间描述和“端点”等方面的差异,建立外弹道空间传输。揭示了HPM武器外弹道的9大传输规律。建立的外弹道传输规律模型及相关理论为高功率微波武器火控、毁伤评估等关键技术的深入研究奠定了理论基础。
抽象的Maraging钢是一种低碳钢,以其热处理后的超高强度而闻名。与添加剂制造(AM)结合使用,Maraging Steel的特性表明有可能实现复杂的几何形状,并提高了弹道保护的性能与重量比率。本研究研究了由粉末床融合制造的AM Maraging钢整体板和轮廓面板的弹道性能。在截然不同的状态和热处理后,Maraging钢的机械性能通过与构建方向相对于三个不同方向的准静态和动态测试揭示。还进行了冶金研究,以研究测试前后材料的微观结构。通过向不同的目标构型发射7.62 mm APM2子弹,在弹道范围内披露了Maraging钢样品的弹道穿孔电阻。获得了弹道极限曲线和速度,表明最厚的热处理钢板具有特别良好的弹道保护潜力。在所有测试中均打破了装甲穿刺子弹的硬芯,并在用热处理靶标进行测试中偶尔会破碎。然而,由于材料的严重脆性,靶标在某些情况下显示出明显的碎片化,最显着的剖面图。
本书由美国海军战争学院数字共享资源特别馆藏免费开放给您。美国海军战争学院数字共享资源授权管理员已接受本书收录在 Newport Papers 中。如需更多信息,请联系repository.inquiries@usnwc.edu。
有限的印刷和电子发行权 复制和印刷受 1976 年《版权法》和美国适用条约的约束。本文及其所含商标受法律保护。本出版物仅供非商业用途使用。未经授权,禁止在线发布本出版物。允许复制本文档用于个人、学术或政府用途,但不得更改且完整,但复制时必须注明作者和中国航天研究所 (CASI)。复制或以其他形式重复使用其任何研究文档用于商业用途,必须获得中国航天研究所的许可。有关重印和链接许可的信息,请联系中国航天研究所。已获准公开发布,发行不受限制。
摘要:弹道冲击负荷下的复合三明治结构可能是防御应用设计的关键点。本文介绍了新的装甲设计,由两个复合板和蜂窝状核心的两个复合板组成,这些板通过0.3口径弹药弹弹APM2受到弹道撞击。复合材料的数值建模在模拟其在撞击载荷下模拟其各向异性行为方面构成了巨大的挑战。考虑了优化故障标准并检查改变材料对弹道反应和能量吸收的影响。使用金属蜂窝核心的复合板和约翰逊 - 库克组成型模型增强的复合组成模型允许在LS-DYNA的撞击负载期间使用失败机理模拟动态塑性变形。通过对实验室测试的反分析,采用了三维模拟。发现数值模拟的结果与实验结果非常吻合。数值研究以评估不同复合材料和各种铝合金对蜂窝芯的影响,其影响速度对混合复合夹层装甲的行为不同。拟议的装甲设计可以对增强新装甲的几代人产生重大影响,并为防御应用实现良好的坚固和轻巧的装甲。
撞击后,每个穿透器都可以通过专用通道连续向着陆器上的 Lora (915MHz) 接收器网关盒发送高达 300 kbps 的数据。网关盒中将组合多达十二个数据通道(每个穿透器节点一个通道)(总计 3.6 Mbps)并路由到 CLPS RS-422 总线,然后从那里进入 CLPS 地球下行链路。对于运行版本,数据流设计为持续 5 年。穿透器将由太阳能供电以实现这一使用寿命。在撞击过程中,穿透器的后舱被分离并留在月球表面,其中包含天线和太阳能电池阵列,以及照相机和任何其他需要表面访问的仪器。