纠缠是一种量子资源,在某些方面类似于经典计算中的随机性。受 Gheorghiu 和 Hoban 最近研究的启发,我们定义了“伪纠缠”的概念,这是由有效构造的量子态集合所表现出的一种特性,这些量子态与最大纠缠的量子态没有区别。我们的构造依赖于量子伪随机态的概念——最初由 Ji、Liu 和 Song 定义——这些伪随机态是有效构造的状态,与(最大纠缠的)Haar 随机态没有区别。具体来说,我们给出了伪纠缠态的构造,其纠缠熵在每个切分上任意接近 log n,这是一个严格的界限,提供了计算与信息理论量子伪随机性之间的指数分离。我们讨论了该结果在矩阵积状态测试、纠缠提炼和 AdS/CFT 对应的复杂性中的应用。与该手稿的先前版本(arXiv:2211.00747v1)相比,该版本引入了一种新的伪随机状态构造,具有更简单的正确性证明,并且同时实现了所有切口的低纠缠技术上更强的结果。
Waloddi Weibull,Chemin Fontanettaz 15,1012 Lasusanne,瑞士,美国空军合同编号F44620-72-C-0028。该合同由项目编号7351,“金属材料”,任务 735106,“金属行为”,由欧洲办公室航空航天研究办公室管理。这项工作由空军材料实验室金属和陶瓷部门监督,空军系统司令部,俄亥俄州赖特-帕特森空军基地,由 AFML/LL 的 W. J. Trapp 先生指导。
经典学习理论中的一个重要研究方向是使用复杂性度量来表征函数类的表达能力。这种复杂性界限反过来又可用于限制学习所需的训练数据的大小。其中最突出的是 Vapnik 和 Chervonenkis (1971) 引入的 Vapnik-Chervonenkis (VC) 维度。其他众所周知的度量包括 Pollard (1984) 提出的伪维度、Alon 等人 (1997) 提出的脂肪粉碎维度、Rademacher 复杂性(参见 Bartlett 和 Mendelson 2002),以及更普遍的度量空间中的覆盖数字。表征对象表达能力的目标也以不同的形式出现在量子信息中。一个众所周知的例子是量子态断层扫描。Aaronson (2007) 将状态断层扫描的变体与经典学习任务相关联,其脂肪粉碎维度可以使用特定的函数类来限制
您可能还需要测试,以了解食物如何通过您的胃,小肠和结肠移动。胃功能通常是通过要求您用放射性同位素吃鸡蛋三明治餐的方法来衡量的,然后跟踪饭菜从胃中排空需要多长时间。该测试称为胃闪烁显像或胃排空测试。小肠运动可以通过跟踪鸡蛋三明治餐中放射性同位素的运动或进行呼吸测试来测量。通常通过跟踪X射线上吞咽塑料标记的运动来测量结肠中的运动。有时需要小肠测压器来帮助诊断,帮助计划提供营养的最佳方法,通过吸入肠道液体识别细菌过度生长或评估预后。例如,测量法提供了有关问题是否影响小肠神经或肌肉的线索。疾病与肠肌肉的缩水弱有关,而如果神经受到影响,则收缩的强度是正常的,但是这种模式会混乱。您的医生可能建议进行呼吸测试,以查看小肠中是否有太多细菌。很少需要对肠道影响部分的活检来研究显微镜下的神经和肌肉。这需要钥匙孔(腹腔镜)或开放手术。
减数分裂通常是一个公平的过程:每个染色体都有50%的机会被包括在每个配子中。但是,与某些染色体相比,某些染色体比其他染色体更有可能变得异常。但是,为什么以及如何发展这种系统尚不清楚。在这里,我们研究了斑点的异常生殖遗传学,在男配子中,在男配子中仅包括母体染色体,而消除了父亲染色体。一种物种 - 伪球菌viburni - 一种隔离的B染色体,它通过消除父亲基因组消除而驱动。我们介绍带有和没有B染色体线的线的整个基因组和基因表达数据。我们确定了B连锁序列,包括204个蛋白质编码基因和卫星重复,占染色体的很大比例。B和核心基因组之间的几个PARA日志分布在整个基因组中,反对一个常染色体的简单或近期的染色体重复,以创建B。我们确实找到了一个373 Kb区域,其中包含146个基因,这似乎是最近的易位。最后,我们表明,尽管在减数分裂过程中表达了许多B连锁基因,但其中大多数是在最近易位的区域编码的。在减数分裂过程中,只有少数B-专有基因表达。在男性减数分裂过程中只有一个过表达,这是在驱动器发生的时候:乙酰基转移酶在H3K56AC中的乙酰基转移酶,在减数分裂中具有推定的作用,因此是进一步研究的有前途的候选人。
玻璃纤维增强复合材料 (GFRC) 在现代生活中无处不在。在任何时候,人们可能都站在 GFRC 组件 20 英尺范围内,无论是汽车、船、风力涡轮机还是住宅复合甲板。尽管它们无处不在,但目前处理使用寿命结束时的 GFRC 的方法并不理想。这些复合材料通常最终进入垃圾填埋场,占用大量空间并浪费了在新产品中重复使用这些材料的潜力。近年来,由于社交媒体平台的发展,人们对这一问题的关注度显著提高。风力涡轮机叶片在垃圾填埋场中广为流传的照片是可再生能源产生的罕见垃圾的缩影,也是试图为实际问题寻找真正解决方案的行业的挫折和创新的缩影。如果我们希望继续使用 GFRC,短期内需要采取权宜之计,例如将复合材料倾倒在垃圾填埋场或将废物用作水泥窑的替代燃料。但从长远来看,这些选择并不能为报废复合材料提供生态甚至人道主义负责的解决方案。2019 年,美国能源部向 Carbon Rivers(田纳西州诺克斯维尔)提供了一项小企业创新研究补助金 (SBIR),以探索复合材料循环经济的解决方案,主要关注风力涡轮机叶片。该公司成立于 2017 年,旨在利用
市场上涨 空气质量和清洁能源领域的公司报告的全球收入为 387.6 亿美元,较去年的 231.6 亿美元大幅增长,占榜单总收入的 22.8%,首次超过危险废物,成为 200 强环境服务行业中最大的行业。全球供水/处理收入从去年的 18.1% 增加近 100 亿美元,达到 349 亿美元,占 200 强总额的 20.6%。收入激增为基于 2023 年收入的 200 强十亿美元企业群体增添了新成员,该群体从两年前的 20 家增加到 31 家。15 家前 200 强公司的环境服务收入也超过 20 亿美元,比去年的排名增加了 10 家。这些公司包括 Mortenson、SolvEnergy、Black and Veatch 和 Stantec,Bechtel 则表示,能源、空气污染和危险废物工作推动了其环境收入超过 30 亿美元。“全球能源转型非常强劲,我们
1 简介:二次量子化、相互作用电子、哈伯德模型及其派生模型 1 横向磁场中的量子伊辛模型:通过 Jordan 1 Wigner、Fourier 和 Bogoliubov 变换的精确解。量子相变和临界性。有序与无序。对偶性。激发和畴壁。 1 纠缠熵:面积定律和对数发散。 3 半整数自旋链:海森堡反铁磁体、Lieb-Schultz-Mattis 1 定理、有序与无序、Goldstone 玻色子、Mermin-Wagner 定理、通过坐标 Bethe 假设的精确解。 4 整数自旋链:Haldane 猜想、Affleck-Kennedy-Tasaki-Lieb 模型、MPS(矩阵积态)和张量网络简介。无间隙边缘模式和对称保护拓扑序。 5 自由费米子系统的拓扑分类:拓扑绝缘体和超导体的周期表,Su-Schriefer-Heeger模型和Kitaev的量子线:拓扑简并和马约拉纳边缘模式。 6 高维自旋模型,自旋液体,规范理论和Kitaev的环面代码模型,拓扑序和任意子 还将有一个小组项目,可以选择为文献综述(例如量子霍尔效应,Levin-Wen弦网络模型,拓扑绝缘体,
量子相变及相关现象 强关联的理论模型和方法 强关联系统中的非平衡现象 非常规超导性 新材料中的超导性 量子磁性、斯格明子和挫折 金属-绝缘体跃迁 用于 SCES 研究的大型研究设施和新技术 SCES 的设备和应用 具有几何特性的关联材料 狄拉克/外尔半金属和拓扑非平凡材料 二维材料 关联相的费米面和电子结构 关联系统中的强自旋轨道相互作用 多铁性材料及相关材料 量子比特的材料和设备 纳米级的突发现象 材料设计和新型先进材料
学术出版物H. T. Huang,J。Luo,J。L. Wu,X。E. Han,Z。D. 2023,doi:10.1109/led.2023.3306015 Z. Y. Yin,Y。Chen,Y。Y. Y. Y. Zhang,Y。Yuan,Y。Yuan,Q. Yang,Y。N.表面缺陷”,高级功能材料,2023,33,2302199。M. T. Jiang,Q. Yang,J。L. Xu*,Y. Yuan,J.Y。Zhang,Y。N. Zhong,Y。N.C. H.H. Zong,M。Wang,W。N。Chen,Z. D. 19300-19306。J. R. Chen,Z。N. Lu,C。H. Zhu,J。W. Cai,Z. D. Zhang,Y。N.Z. D.X. Y. Zhang,J。L. Xu*,S。Ren,Q. Yang,M。J. Liu,X。H.
