请引用本文:Clementi, E. 等人 (2021)。使用中性彗星试验测量培养细胞中的 DNA 损伤。Bio-protocol 11(22): e4226。DOI:10.21769/BioProtoc.4226。
保存核基因组的完整性对于细胞,组织和生物体的生存能力和整体健康至关重要。DNA,在生理条件下容易受到损害,并且容易受到内源性和环境因素的影响,面临着持续的威胁。为了评估单个真核细胞内的DNA损伤和修复,该彗星分析表明自己是一种多功能,基于凝胶电泳,相对简单且高度敏感的方法。最初旨在监测哺乳动物细胞种群内的DNA损伤和修复,该彗星分析现已在包括酵母,原生动物,植物,植物和无脊椎动物在内的各种域中发现了应用。这项技术在冷冻保存研究中已证明是无价的,它是确定合适的冷冻保存方案的宝贵辅助手段。这些方案包括与冷冻保护剂,样品制备以及时间和温度有关的储存条件有关的选择。在动物冷冻保存研究领域,彗星分析是评估DNA完整性的金标准方法。尽管如此,在以植物为导向的调查中应用,由于植物细胞的独特性质和相关的技术挑战,额外的努力至关重要。本综述阐明了彗星测定法,讨论其当前迭代的基本原则,并描述了其在动物和植物标本的冷冻保存中的应用。此外,在植物样品冷冻保存的背景下,我们深入研究了彗星测定效用作为监测工具面临的主要挑战。
上下文。cometary子流线小径存在于彗星附近,形成了星际尘埃云的细胞结构。这些步道主要由最大的彗星颗粒组成(大小约为0.1 mm – 1 cm),它们以低速弹出,并保持非常接近彗星轨道,以围绕太阳的几次旋转。在1970年代,向内部太阳系推出了两个Helios航天器。航天器配备了原位灰尘传感器,该传感器第一次测量了内部太阳系中星际尘埃的分布。最近,当重新分析HELIOS数据时,发现了七个影响的聚类,由Helios在非常狭窄的空间区域中检测到,真正的异常角度为135±1°,作者认为这是潜在的cometary Trail颗粒。但是,当时无法进一步研究该假设。目标。我们在Helios Dust Data中重新分析了这些候选彗星径向粒子,以调查某些或全部确实起源于彗星步道的可能性,并且我们限制了它们的源彗星。方法。空间模型中用于探索的星际探索(IMEX)尘埃流是一种新的且最近发布的通用模型,用于内部太阳系中的彗星气星流。我们使用IMEX研究Helios制作的彗星径的遍历。结果。在太阳周围的十革命中,Helios航天器与13条彗星小径相交。在大多数遍历中,预测的灰尘频量非常低。结论。在Helios检测到候选粉尘颗粒的狭窄空间区域中,航天器反复穿越45p/Honda-Mrkos-Pajdušáková彗星的步道,并具有72p/Denning-fujikawa,具有相对较高的预测粉尘。对检测时间和粒子冲击方向的分析表明,四个检测到的粒子与这两个彗星的来源兼容。通过组合测量和模拟,我们在这些小径中发现了尘埃空间密度,约为10-8 –10-7 m -3。在较狭窄的空间区域中,径向遍历的聚类构成了Helios数据中潜在的彗星径向颗粒的识别。基于航天器的尘埃分析仪可以将其追溯到其源体的现场检测和分析,为对彗星和小行星的远程组成分析提供了一个新的机会,而无需将航天器吹入甚至降落在这些天体上。这为命运 +(例如,与Phaethon Flyby and Dust Science的空间技术的示范和实验),Europa Clipper以及星际映射和加速探针提供了新的科学机会。
彗星农场是一种易于使用的,基于网络的,整个农场和牧场碳和温室气体会计系统。彗星农场对所有用户都是免费的。彗星 - 农场允许用户评估保守习惯如何减少温室气体排放并从农场和牧场运营中隔离碳。。
在彗星测定中的摘要中,如果细胞被X X倍化为Genoto XIC剂,则在单细胞凝胶电泳后形成尾巴。these尾巴包括DNA单链断裂(SSB)和双链断裂(DSB)的混合物。ho w e v er,这些两种类型的链断裂无法使用具有Con V en ventionDNA染色的彗星测定方案来区分。由于DSB对单元格是有问题的,因此如果可以在同一彗星中差异化SSB和DSB,则将很有用。为了能够区分SSB和DSB,我们为聚合酶辅助的DNA损伤分析(PADDA)设计了一种协议,可与Flash Comet协议或固定单元格结合使用。通过使用DNA聚合酶I将SSB和末端脱氧核苷酸转移酶标记为具有荧光团标记的核苷酸的DSB。在此,TK6细胞或HACAT细胞暴露于过氧化氢(H 2 O 2),电离辐射(X射线)或DNA切割酶,然后遵循彗星方案,以实施彗星方案。p adda提供了更广泛的检测范围,未发现的DNA链断裂的未发现的未发现。
图1。在M12中跟踪EB1彗星的等源性PC细胞系,表达GFP标记的WT-或变体-AR。 mt Tips和AR用GFP标记并成像一分钟(每秒的采集率为两个图像)。 EB1彗星是计算跟踪的(Yang等,2005)。 颜色编码代表EB1速度和较冷的颜色对应于较低的速度,较温暖的颜色对应于更快的速度。 比例尺等于5 µm。 (a)表达野生型AR变体的PC细胞的MT生长轨迹。 中位速度约为15 µm,边缘有明显的放缓,那里没有AR。 (b)表达对紫杉醇治疗具有抗性的ARV7变体细胞的MT生长轨迹。 中位速度约为24 um/min。 下面板显示相应的EB1彗星速度直方图。 在AR野生型中显示了µm/min的生长速度的直方图和ARV7变体的(d)。 我们解散了前列腺组织(图 2)根据(Goldstein等,2011)和培养的类器官在M12中跟踪EB1彗星的等源性PC细胞系,表达GFP标记的WT-或变体-AR。mt Tips和AR用GFP标记并成像一分钟(每秒的采集率为两个图像)。EB1彗星是计算跟踪的(Yang等,2005)。颜色编码代表EB1速度和较冷的颜色对应于较低的速度,较温暖的颜色对应于更快的速度。比例尺等于5 µm。(a)表达野生型AR变体的PC细胞的MT生长轨迹。中位速度约为15 µm,边缘有明显的放缓,那里没有AR。(b)表达对紫杉醇治疗具有抗性的ARV7变体细胞的MT生长轨迹。中位速度约为24 um/min。下面板显示相应的EB1彗星速度直方图。在AR野生型中显示了µm/min的生长速度的直方图和ARV7变体的(d)。我们解散了前列腺组织(图2)根据(Goldstein等,2011)和培养的类器官
Zearalenone(ZEN)是一种由几种在谷物和农产品中发现的镰刀菌产生的非甾体雌激素霉菌毒素。Zen与农场动物和人类的霉菌毒性有关。ZEN的毒性作用众所周知,但是尚未确定碱性彗星测定法评估Zen诱导的Chang肝细胞中氧化DNA损伤的能力。这项研究的第一个目的是评估彗星测定法测定Zen Toxin诱导的细胞毒性和DNA大坝的程度,第二个目的是研究N-乙酰半胱氨酸酰胺(NACA)保护细胞以保护细胞免受Zen诱导的毒性的能力。在彗星测定中,通过量化尾部范围矩(TEM;任意单位)和尾部长度(TL;任意单位)来评估DNA损伤,这些损伤用作SCGE中DNA链断裂的指标。通过抑制细胞增殖并诱导氧化DNA损伤,介导Zen在变肝细胞中的细胞毒性作用。增加ZEN的集中度增加了DNA损伤的程度。用Zen毒素治疗后,DNA迁移的程度和尾部的细胞百分比显着增加(P <0.05)。与高浓度的Zen毒素(250 p m)的细胞治疗相比,用低浓度的Zen毒素(25 p m)处理Zen毒素(25 p m)的治疗诱导的DNA损伤水平相对较低。氧化DNA损伤似乎是Chang肝细胞中Zen诱导的毒性的关键决定因素。在暴露于任何浓度的ZEN之前先用NACA预先处理细胞时,观察到细胞溶解性的显着降低和氧化DNA损伤。我们的数据表明ZEN在Chang肝细胞中诱导DNA损伤,NACA的抗氧化活性可能有助于通过消除氧化应激减少Zen诱导的DNA损伤和细胞毒性。
图1。在M12中跟踪EB1彗星的等源性PC细胞系,表达GFP标记的WT-或变体-AR。 mt Tips和AR用GFP标记并成像一分钟(每秒的采集率为两个图像)。 EB1彗星是计算跟踪的(Yang等,2005)。 颜色编码代表EB1速度和较冷的颜色对应于较低的速度,较温暖的颜色对应于更快的速度。 比例尺等于5 µm。 (a)表达野生型AR变体的PC细胞的MT生长轨迹。 中位速度约为15 µm,边缘有明显的放缓,那里没有AR。 (b)表达对紫杉醇治疗具有抗性的ARV7变体细胞的MT生长轨迹。 中位速度约为24 um/min。 下面板显示相应的EB1彗星速度直方图。 在AR野生型中显示了µm/min的生长速度的直方图和ARV7变体的(d)。 我们解散了前列腺组织(图 2)根据(Goldstein等,2011)和培养的类器官在M12中跟踪EB1彗星的等源性PC细胞系,表达GFP标记的WT-或变体-AR。mt Tips和AR用GFP标记并成像一分钟(每秒的采集率为两个图像)。EB1彗星是计算跟踪的(Yang等,2005)。颜色编码代表EB1速度和较冷的颜色对应于较低的速度,较温暖的颜色对应于更快的速度。比例尺等于5 µm。(a)表达野生型AR变体的PC细胞的MT生长轨迹。中位速度约为15 µm,边缘有明显的放缓,那里没有AR。(b)表达对紫杉醇治疗具有抗性的ARV7变体细胞的MT生长轨迹。中位速度约为24 um/min。下面板显示相应的EB1彗星速度直方图。在AR野生型中显示了µm/min的生长速度的直方图和ARV7变体的(d)。我们解散了前列腺组织(图2)根据(Goldstein等,2011)和培养的类器官
氧化DNA损伤标志物(8OHDG,彗星测定,GammaH2AX)已广泛用于临床心脏ogy研究中。为了对人类高血压的DNA损害进行此综述,我们使用了数据库(例如PubMed,Web of Science)搜索截至2022年6月30日的英语出版物和术语:DNA损害,彗星测定,Gammah2ax,8OHDG,Strand Breaks和Arterial Hypersension。排除标准是:儿童,缺乏相关控制,动物外高血压问题,动物,细胞线。从总共79526年,选择了15个人类研究。包括902名高血压患者(PTS):(彗星:n = 418 pts; 8oHdg:n = 484 pts)和587个对照组(彗星:n = 203; 8ohdg:n = 384)。高血压PT的DNA损伤明显高于健康对照组(彗星26.6±11.0 vs 11.7±4.07任意单位/a.u./; P <0.05和8OHDG 13.1±4.12 vs 6.97±2.67 ng/mg蛋白; P <0.05;在更不利的情况下观察到更大的DNA损伤(同心心脏肥大43.4±15.4 vs 15.6±5.5;持续/未经治疗的高血压31.4±12.1 vs 14.2±5/35.0±5.0±5.0±5.0 vs 25.0±5.0±5.0±5.0;非二手;;老年人14.9±4.5 vs 9.3±4.1 ng/mg肌酐;没有Carvedilol 9.1±4.2 vs 5.7±3.9;冠状动脉疾病为0.5±0.1 vs 0.2±0.1 ng/ml)(p <0.05),用荟萃分析证实。DNA DAM年龄与血清糖基化血红蛋白(r = 0.670; P <0.05)的良好相关,并与总抗氧化剂状态(r = -0.670至-0.933; p <0.05)。这是首次进行荟萃分析的系统综述,表明与对照组相比,动脉高血压的人类氧化性DNA损伤增加了。