此信息和资源收集支持现成的学校,俄勒冈州教育部(ODE)于2021年发行的安全学习者弹性框架。本文档着重于通过最关键的形成性评估实践来满足学习者的学术需求。形成性评估是平衡评估系统的关键组成部分,极大地影响了学生的成就。引起,解释和使用证据作为正在进行的教学和学习的一部分,使教育者和学生可以调整使学生从当前的理解水平转移到展示预期的学习成果。研究支持的形成性评估是一个强大的学习过程;这不同于简化或包装的形成性评估版本,这些版本具有小型测试或测验,或孤立的反馈策略,例如“退出票”或“五个拳头”。形成性评估可能包括这种成分,但是一个以持续改进为基础的更为复杂,多维教学周期。此处仅解释了形成性评估的最关键维度;下面引用的OFAST课程可更深入地了解完整的形成性评估过程。本文档将有助于:
因此,鉴于这一需求,本论文研究的重点是创建一种方法,用于预测受到平面内和平面外载荷的凸耳接头的疲劳寿命。这项研究是与 GKN Fokker Aerostructures 合作进行的。当前的疲劳预测方法都是基于轴向载荷的凸耳。从概念上讲,这种方法应用了 Larsson 关系,该关系通过某些校正系数将任意凸耳的标称应力与参考凸耳联系起来。然后将凸耳的标称应力应用于 S-N 曲线,从而得出失效前的循环数(疲劳寿命)。Fokker 在其技术手册 3(TH3)中描述了这种方法。然而,Larsson 和 TH3 都没有考虑斜向和/或平面外载荷的凸耳来预测疲劳寿命。已经对斜向载荷的凸耳进行了一些研究,但这些研究的主要重点是峰值应力位置和应力集中因子 (SCF) 的计算。在公开报告的研究中没有发现关于平面外负载凸耳的信息。
A prominent academic journal in the field of cancer immunotherapy has adopted the non-clinical research results of SAIL66, which uses the Dual-Ig technology, a unique antibody engineering technology made by Chugai Pharmaceutical, Non-clinical research suggests that SAIL66 has high selectivity for CLDN6 (claudin 6), and that it may exhibit a higher antitumor effect compared to conventional T-cell engagers by costimulating CD3和CD137目前,正在对CLDN6阳性固体癌
没有人类驾驶员的干预,并与其他车辆和/或基础设施以及其他设备2进行通信2。美国运输部总结了将CAV技术引入运输系统3:道路安全,经济和社会福利,能源效率和公共流动性的四个主要潜在好处。CAV技术为驾驶员/车辆和交通基础设施创造了一个新的环境,以在现实世界中进行交互。在这种环境中,连接起着至关重要的作用,无线通信使车辆能够相互通信(V2V)以及基础架构(V2I)(v2i)关于实时车辆位置,速度,加速度和其他数据。这些实时数据的可用性为CAVS提供了协调交通相互作用的机会,以使交通相互作用,以最大程度地提高燃油效率并减少碰撞4。猜测对自动运输系统进行了实质性转变,已经进行了许多研究,以调查涉及CAV应用程序的挑战和机会5,6,7,8。例如,橡树岭国家实验室9正在开发用于CAVS应用程序的实时移动控制系统(RTMC),其中包括流量数据管理,路线计划,集中式通信和可视化。已经证明,可以使用交通信号阶段和计时(SPAT)信息来提高车辆燃油效率以协调车辆操作10。还已经确定,可以通过解决相关的最佳控制问题4来确定车辆的最佳速度方案。然而,尽管许多研究人员已经证明了使用SPAT信息来优化燃油经济性的潜力,但大多数努力都集中在提高单个车辆的性能并发出信号计时控制11,12。此外,相关作品主要集中于为CAV生成可行的轨迹,同时忽略了以计算效率和保证收敛性来实时执行生成的轨迹。骑士的运动控制系统是安全至关重要的,并严重依赖于车载算法。需要对操作的实时更新,以应对周围环境的动态。尽管已经提出了许多方法来获得轨迹的轨迹,但由于高计算成本,无法保证最佳解决方案,并且无法应付非凸运动限制和动态环境,因此它们的优化方法不适合现实世界实施。13,14。本文将通过开发一种基于凸优化的新型方法来满足这种需求,该方法使用SPAT信息产生速度曲线。具有多项式解决方案时间和全球最佳收敛的优点,凸优化方法对于车载应用非常有前途。这项研究的贡献是三倍。首先,提出的顺序凸编程(SCP)算法解决了非线性和非凸的最佳速度控制问题,并确保收敛性和多项式解决方案时间在解决每个步骤中解决凸的问题时。本文的其余部分如下:第2节对相关工作进行了简要审查。第二,我们利用伪搭配方法与线路搜索和信任区域技术结合使用,从根本上改善了提出的SCP算法,以提高准确性,更好的实时和融合性能。第三,得益于高级计算效率,该提出的方法实现了实时模型预测控制(MPC)框架,并对动态交通环境的即时响应,以避免碰撞和车辆协调。第3节描述了本研究中考虑的系统动力学和最佳控制问题。第4节介绍了一种新方法,该方法确定了在信号走廊中行驶的骑士的最佳车辆速度轮廓。第5节通过模拟结果和比较证明了拟议方法的性能和有效性。第6节总结了本文的工作。
摘要通常是各种物理量的预期值,例如占据某些状态的电子数量或不同电子状态之间的库仑相互作用,可以用积分来表示。相比之下,我们的方法基于差异形式,表明可以通过平均时间来获得期望值。确认我们方法的有效性,我们准备了两种情况:一个是一个非常简单的情况,没有多体相互作用,另一种是包含多体项的情况(最简单的安德森·哈密顿式)。关于简单的情况而没有包含多体项,我们可以分析地证明,占据从我们方法得出的任何状态的电子数量等同于从绿色功能方法中评估的分析。包括多体项时,我们的结果显示了与绿色功能方法得出的分析方法的良好数值一致。通过两种情况,基于我们方法的预期值计算被认为是有效的。
目录 章 页码 1. 介绍................................................................................................................ 1 2. 理论................................................................................................................... 6 2.1 直轴和交轴................................................................................................... 6 2.2 等效电路................................................................................................... 8 2.3 功率角特性................................................................................................... 9 3. 设计参数...................................................................................................... 11 3.1 气隙...................................................................................................... 11 3.2 磁通密度...................................................................................................... 12 3.3 定子和励磁绕组...................................................................................... 12 3.4 波形...................................................................................................... 13 3.5 电抗...................................................................................................... 13 3. 转子设计............................................................................................................. 15 4.1 机械...................................................................................................... 15 4.1.1 励磁绕组.
保留培训数据的隐私已成为一个重要的考虑因素,现在对于机器学习算法来说是一项艰巨的任务。要解决隐私问题,依从于密码学的差异隐私(DP)(Dwork等,2006)是一个强大的数学保存计划。它允许进行丰富的统计和机器学习分析,现在正成为私人数据分析的事实上的符号。保证差异隐私的方法已被广泛研究,最近在行业中采用(Tang等,2017; Ding等,2017)。作为机器学习和差异隐私社区中最重要的问题之一,在过去的十年中,DP模型中的经验风险最小化问题(即DP-erm)在(Chaudhuri等人,2011年)开始,已经在过去的十年中进行了很好的研究,例如(Bassily等,2014; Bassily等,2014; Wang et ant; Jin,2016年,Kifer等人,2017年,Wang等人,2018a,2019b;dp-dp-erm,其人口(或预期)版本,即私人的固定式凸优化(DP-SCO),近年来从(Bassily等,2014)开始受到很多关注。特定于(Bassily等,2019)首先提供了DP-SCO的最佳速率,具有(ϵ,δ)-DP的一般凸损耗函数,这与DP-MERM中最佳速率不同。后来(Feldman等,2020)通过提供一般性定位技术,将此问题扩展到强烈凸出和(或)非平滑案例。此外,如果损耗函数平滑,它们的方法具有线性时间复杂性。对于非平滑损失函数,(Kulkarni等,2021)最近提出了一种仅需要亚限级梯度复杂性的新方法。虽然已经有大量有关DP-SCO的研究,但问题仍然远远不够知名度。一个关键的观察结果是,所有以前的作品仅着眼于损失函数是一般凸或强凸的情况。但是,还有许多问题甚至比强凸功能强,或者落在凸功能和强烈凸功能之间。在非私人对应物中,各种研究试图通过对损失函数施加其他假设来获得更快的速度。并且已经表明,实现比一般凸损失函数速率快的速率确实可以(Yang等,2018; Koren and Levy,2015; van Erven等,2015),或者甚至可以达到与强凸的强劲速率相同的速率,即使函数也不强劲,karimi et al al an al al an al al and act al and act al and act an al al an al an al an al al an al al an al al al al al al al al al al al al al al al al al al al al al al al al al al a al al a al al act 201 v exe et a al and lie et as act 2010 8。 Al。,2017)。以此为动机,我们的问题是,对于具有特殊类别的人口风险功能的DP-SCO问题,是否有可能比一般凸的最佳人口和(或(或)强烈凸出案例的最佳人口风险率更快?在本文中,我们通过研究一些类别的人口风险功能来提供有效的答案。尤其是,我们将主要关注种群风险功能满足Tysbakov噪声条件(TNC)1的情况,其中包括强烈凸功能,SVM,SVM,ℓ1频繁的随机性优化和线性回归为特殊情况
本文提出了一种三相不平衡微电网三级控制优化模型。该模型考虑了 24 小时运行,包括可再生能源、储能设备和电网规范限制。使用最近开发的基于 Wirtinger 微积分的近似法简化了功率流方程。对所提出的模型进行了理论和实践评估。从理论角度来看,该模型适用于三级控制,因为它是凸的;因此,保证了全局最优、解的唯一性和内点法的收敛性。从实践角度来看,该模型足够简单,可以在小型单板计算机中实现,计算时间短。后者通过在具有 CIGRE 低压基准的 Raspberry-Pi 板上实现该模型来评估;该模型还在 IEEE 123 节点配电网络测试系统中进行了评估。
摘要 当输入点来自结构化配置(例如二维 (2D) 或三维 (3D) 网格)时,许多实际应用都要求计算凸包 (CH)。网格空间中的凸包已应用于地理信息系统、医学数据分析、机器人/自动驾驶汽车的路径规划等。用于 CH 计算的传统和现有的 GPU 加速算法不能直接在以矩阵格式表示的 2D 或 3D 网格上运行,并且不能利用这种光栅化表示中固有的顺序。这项工作引入了新颖的过滤算法,最初为 2D 网格空间开发,随后扩展到 3D 以加速外壳计算。它们进一步扩展为 GPU-CPU 混合算法,并在商用 NVIDIA GPU 上实现和评估。对于 2D 网格,对于 ( n × n ) 网格,贡献像素的数量始终限制为 ≤ 2 n。此外,它们是按字典顺序提取的,从而确保了 CH 的高效 O(n) 计算。同样,在 3D 中,对于 (n×n×n) 体素矩阵,贡献体素的数量始终限制为 ≤ 2n2。此外,2D CH 滤波在 3D 网格的所有切片上并行启用,从而进一步减少了要输入到 3D CH 计算过程的贡献体素的数量。与最先进的方法相比,我们的方法更胜一筹,尤其是对于大型和稀疏的点云。