现代机器学习中的随机优化方法通常需要仔细地调整算法参数,以大量的时间,计算和专业知识。这种现实导致人们对开发自适应(或无参数)算法的持续兴趣,这些算法需要最小或不需要调整[1、2、4-8、10-10-15、17-20]。但是,这些适应性方法通常比非自适应对应物的次级次数范围更差。存在“尽可能自适应”,还是有改进的空间?换句话说,是否有基本价格要支付(按照收敛速度),因为不知道问题参数吗?为了回答这些问题,我们从算法游戏理论中的“无政府状态价格” [16]中汲取了灵感,并介绍了“适应性价格”(POA)。大致说明,由于问题参数的不确定性,POA衡量了次优的乘法增加。我们显示了以下非平滑随机凸优化的POA下限:
从高维凸体中生成随机样品是无数连接和应用的基本算法问题。[DFK91]的著名结果的核心是用于计算凸体体积的随机多项式算法,是第一个用于均匀采样凸体的多项式时间算法。在此后的几十年中,对抽样的研究已导致其算法复杂性的一系列改进[LS90,LS93,KLS97,LV06,CV18],通常基于发现的新数学/几何结构,建立了与其他领域的连接(例如,均具有新的工具),并开发了新的工具(例如并分析马尔可夫连锁店。随着数据的扩散和机器学习的越来越重要,取样也已成为一种必不可少的算法工具,应用采样器需要非常高的尺寸的采样器,例如科学计算[CV16,HCT + 17,KLSV22] Sta20]。凸体的采样器基于马尔可夫链(有关摘要,请参见§A)。他们的分析是基于关联的马尔可夫链的电导限制,后者又界定了混合速率。分析电导需要将精致的几何参数与(Cheeger)凸体的(Cheeger)等级不平等相结合。后者的原型示例如下:对于任何可测量的分区S 1,s 2,s 3的凸形身体k r d,我们有
文学:Rummel,C.D.,Jahnke,A.,Gorokhova,E.环境。SCI。 技术。 Lett。 4(7),258 - 267 Zettler,E。R.,T。J. Mincer和L. A. Amaral-Zettler(2013)。 “ plastisphere”中的生命:塑料海碎片上的微生物群落。” 环境科学技术47(13):7137-7146。 Gewert,B.,M。M. Plassmann和M. MacLeod(2015)。 “在海洋环境中漂浮的塑料聚合物降解的途径。” 环境SCI过程影响17(9):1513-1521。SCI。技术。Lett。 4(7),258 - 267 Zettler,E。R.,T。J. Mincer和L. A. Amaral-Zettler(2013)。 “ plastisphere”中的生命:塑料海碎片上的微生物群落。” 环境科学技术47(13):7137-7146。 Gewert,B.,M。M. Plassmann和M. MacLeod(2015)。 “在海洋环境中漂浮的塑料聚合物降解的途径。” 环境SCI过程影响17(9):1513-1521。Lett。4(7),258 - 267 Zettler,E。R.,T。J. Mincer和L. A. Amaral-Zettler(2013)。 “ plastisphere”中的生命:塑料海碎片上的微生物群落。” 环境科学技术47(13):7137-7146。 Gewert,B.,M。M. Plassmann和M. MacLeod(2015)。 “在海洋环境中漂浮的塑料聚合物降解的途径。” 环境SCI过程影响17(9):1513-1521。4(7),258 - 267 Zettler,E。R.,T。J. Mincer和L. A. Amaral-Zettler(2013)。“ plastisphere”中的生命:塑料海碎片上的微生物群落。”环境科学技术47(13):7137-7146。Gewert,B.,M。M. Plassmann和M. MacLeod(2015)。 “在海洋环境中漂浮的塑料聚合物降解的途径。” 环境SCI过程影响17(9):1513-1521。Gewert,B.,M。M. Plassmann和M. MacLeod(2015)。“在海洋环境中漂浮的塑料聚合物降解的途径。”环境SCI过程影响17(9):1513-1521。
研究了Sn-Bi-Cu、Sn-Bi-Ni、Sn-Bi-Zn、Sn-Bi-Sb合金的超塑性变形行为。本研究旨在测定Sn-Bi二元合金的应变速率敏感性指数m。在不同横梁速度下进行25、40、60和80 ℃拉伸试验,测定指数m。结果表明,指数m随Bi浓度和试验温度的增加而增大。在60和80 ℃时,Sn-Bi合金的指数m均超过了3.0,这是超塑性变形行为的阈值。研究发现,Sn-Bi共晶组织对亚共晶Sn-Bi合金的超塑性变形有显著的影响。
分数演算在机器学习和生物医学工程中的应用是一个新颖且快速增长的研究领域。分数演算(FC)与机器学习(ML)和生物医学工程(BME)的交集是一个新兴领域,有望彻底改变我们在数据分析,信号处理,生物医学系统建模和控制方面解决问题的方式。该特刊旨在将FC应用于ML和BME领域的领域中的尖端研究和发展,包括但不限于以下内容:FC的理论进步及其对ML和BME的含义;开发对机器学习和重新学习的范围的分数算法的开发;包括Neural Intervers in Neural Intervers in Neural Interials fr Fr Fring; FRIF;和图像分析;使用分数阶微分方程对生物系统进行建模;生物医学设备和机器人技术中的分数控制系统;分数演算在生理建模和生物信息信息学中的应用;在FC与ML和BME集成中的挑战和未来方向。
2 诊断工具箱:量子纠缠和共形场论.......................................................................................................................................................................................................................................5 2.1 量子纠缠....................................................................................................................................................................................................................................................................6 2.1.1 纠缠:不可分离性....................................................................................................................................................................................................................................................6 2.1.1 纠缠:不可分离性.................................................................................................................................................................................................................................................... 6 2.1.2 冯·诺依曼纠缠熵..................................................................................................................................................8 2.1.3 纠缠缩放..................................................................................................................................................................................10 2.1.4 协方差矩阵方法..................................................................................................................................................................................15 2.2 共形场论..................................................................................................................................................................................15 . . . . 19 2.2.1 共形不变性 . . . . . . . . . . . . . 19 2.2.2 希尔伯特空间形式 . . . . . . . . . . . . . . 22 2.2.3 最小模型 . . . . . . . . . . . . . . . . . 25 2.2.4 一个例子:格子伊辛模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .三十七
在这里,我们使用各种数值方法研究了分形的枢纽模型:确切的对角度化,(平均)Hartree-fock Hamiltonian和最先进的辅助辅助辅助磁场量子量子carlo的自搭配性抗态化。我们专注于使用Hausdorff维度1的Sierpinski三角形。58,考虑几代人。在紧密结合的极限中,我们发现了紧凑的局部状态,这也用对称性来解释,并与弱相互作用处的铁磁相形成有关。在半填充时进行的模拟显示了这种类型的磁性顺序的持续性,即相互作用强度的每个值和u/t〜4.5的莫特过渡。此外,我们发现了关于i)不同世代紧凑型局部状态的数量,ii)ii)在紧密结合限制中的总多体 - 地面能量的缩放,以及iii)lattice corners corners of电子填充的特定值。此外,在存在固有的自旋轨道上的情况下,零能量紧凑的局部态被纠缠并产生内角和外角模式。