摘要 物联网渗透到生活和工作的各个领域,使物理对象具有数字技术的特征。此外,在能源领域,光伏系统、电池存储系统和恒温器等物理产品都配备了智能和连接组件,成为智能能源产品。智能能源产品使新型服务成为可能,这些服务就是智能能源服务。例如,智能恒温器可以根据收集和分析的数据提供智能预热服务。在此背景下,智能能源服务为公司提供了新的商业潜力,也为私人家庭带来了附加值。为了从这一发展中获益,公司需要了解产品和基于这些产品构建的服务的特性和功能。智能能源服务尤其看起来很有前景,因为服务被视为通往客户的桥梁。然而,支持智能能源服务设计的研究很少。为了弥补这一差距,本文从多个维度对智能能源服务进行了形态分析。在强调智能能源服务的独特特征的同时,本文对智能能源服务的性质及其在新的消费者和商业价值方面的潜力进行了更细致的描绘。此外,以消费者为导向的智能能源服务现象将进一步概念化,形态框可被视为智能能源服务设计的结构化方法。
海洋酸化(OA)深刻影响海洋生物化学,从而导致生物多样性损失。porifera通常被预测为获胜者分类单元,但是应对OA的策略可能会有所不同,并可能产生多样化的健身状况。在这项研究中,比较了基于V 3 - V 4 16S rRNA基因标记的微生物移位,均具有高微生物丰度(HMA)的邻居无聊的肾脏肾状态肾小管和低微生物含量(LMA)微生物群。海绵Holobionts在具有低pH值(PHT〜7.65)的CO 2通风系统中共发生,并且在Ischia岛附近具有环境pH(pHT〜8.05)的控制位点,代表了研究未来OA的自然类似物,并且面对全球环境变化,物种的反应。微生物的多样性和组成在两个物种跨越不同,但在不同的水平上有所不同。在Cunctatrix中检测到核心分类单元的数量增加,在OA下,在肾牙叶梭状芽孢杆菌中报道了更多样化和柔性的核心微生物组。通气S. cunctatrix表现出形态障碍,以及假定的压力诱导的营养不良的迹象,表现为:1)α多样性的增加,2)从海绵相关的微生物向海水微生物转移,以及3)高营养不良评分。肾形状在代替中,没有形态变化,失调分数低,并且α多样性的降低和排气标本中的核心分类量降低。因此,
本期特刊将重点介绍集成光子神经形态系统的最新进展,讨论当前和未来的挑战,并概述应对这些挑战所需的科学和技术进步。我们欢迎各种有关神经形态光子学的有意义且有价值的手稿,包括与用于实现计算、神经传感和替代神经形态范式的材料、设备和硬件架构相关的手稿。涉及新兴非常规技术作为神经形态技术候选解决方案的投稿也将受到考虑。主题包括但不限于:- 神经形态工程 - 光子学 - 人工智能 - 脑启发计算 - 突触可塑性 - 光学神经网络
纳米过滤(NF)提供了一种可扩展且节能的方法,用于从盐湖中提取锂。然而,由于其水合离子半径的紧密相似性,锂与镁的选择性分离,尤其是在镁浓度高的盐水中,仍然是一个重大挑战。有限的LI + / mg 2 +当前NF膜的选择性主要归因于对孔径和表面电荷的控制不足。在这项研究中,我们报告了结合功能化的磺化carge胶以调节界面聚合过程的层间薄膜复合材料(ITFC)膜的发展。该集成的层间在控制胺基单体的扩散和空间分布中起着至关重要的作用,从而导致形成致密的纳米条纹聚酰胺网络。与常规的TFC膜相比,这些结构改进,包括精致的孔径和减少负电荷可显着提高LI + /Mg 2 +选择性(133.5)和渗透率增加2.5倍。此外,纳米条纹结构优化了膜过滤区域,同时最大程度地降低了离子传输抗性,从而有效克服了离子选择性和渗透性之间的传统权衡。这项研究强调了ITFC膜在达到高锂纯度和恢复的潜力,为大规模从盐水中提取大规模锂的途径有前途的途径。
摘要 — 神经形态计算是一个令人兴奋且发展迅速的领域,旨在创建能够复制人类大脑复杂动态行为的计算系统。有机电化学晶体管 (OECT) 因其独特的生物电子特性而成为开发此类系统的有前途的工具。在本文中,我们提出了一种使用 OECT 阵列进行信号分类的新方法,该方法表现出类似于通过全局介质连接的神经元和突触的多功能生物电子功能。我们的方法利用 OECT 的固有设备可变性来创建具有可变神经元时间常数和突触强度的储存器网络。我们通过将表面肌电图 (sEMG) 信号分为三个手势类别来证明我们方法的有效性。OECT 阵列通过多个门馈送信号并测量对具有全局液体介质的一组 OECT 的响应来执行有效的信号采集。我们比较了在有和没有将输入投射到 OECT 上的情况下我们的方法的性能,并观察到分类准确率显著提高,从 40% 提高到 68%。我们还研究了不同的选择策略和使用的 OECT 数量对分类性能的影响。最后,我们开发了一种基于脉冲神经网络的模拟,该模拟模仿了 OECT 阵列,并发现基于 OECT 的分类与基于脉冲神经网络的方法相当。我们的工作为下一代低功耗、实时和智能生物医学传感系统铺平了道路。
欧洲形态的照片旨在使用光子基板从大脑中汲取灵感来设计有效的计算硬件。与标准的von Neumann体系结构相比,由于使用光学技术而导致的速度和并行性的潜在增长源于速度和并行性的潜在增益。在数值神经形态的光子平台中,令人兴奋的微晶石表现出在生物神经元中存在的许多特性,因此吸引了快速有效的脑浸入功能。从构建块开始,光学神经隆(主要目标)是设计具有可控权重的互连可激发节点的光子神经网络,从而实现了学习能力。这些构建块也可以是
由于CMOS技术的物理规模限制,摩尔定律接近终结,替代计算方法已引起了相当大的关注,这是改善计算性能的方法。在这里,我们评估了一种新方法的性能前景,基于与约瑟夫森 - 界面的无序超导循环进行节能神经形态计算。突触权重可以存储为与多个约瑟夫森 - 界面(JJ)相连的三个超导环的内部捕获式磁通状态,并以以控制方式以离散通量(量化的通量)施加的输入信号调节。稳定的捕获的磁通状态将传入通量通过不同的途径,其流量统计量代表不同的突触权重。我们使用这些Fluxon Synapse设备的阵列探讨了矩阵 - 矢量 - 义务(MVM)操作的实现。我们研究了MNIST数据集的在线学习的能源效率。我们的结果表明,与其他最先进的突触设备相比,Fluxon Synapse阵列可以减少100倍的能量消耗。这项工作提出了概念验证,该概念将为基于超导材料的高速和高能节能的神经形态计算系统铺平道路。
背景:Justicia adhatoda 是一种多年生灌木,含有多种潜在的喹唑啉生物碱,包括 vasicine、vasicinone、脱氧 vasicine、vasicol、adhatodinine 和 vasicinol。目的:本研究旨在探讨喹唑啉生物碱 vasicine 对大鼠链脲佐菌素引起的糖尿病相关肾病的影响。材料与方法:从 Justicia adhatoda 叶中提取 vasicine。方法雄性Wistar大鼠4组,每组30只,分为4组:阴性对照组(口服白开水)、阳性对照组(腹膜内注射链脲佐菌素55mg/kg体重,溶于柠檬酸盐缓冲液,pH4.5)以及治疗组III和IV,分别接受格列本脲(5mg/kg体重,溶于0.5%DMSO)和瓦西汀(0.9mg/kg体重,溶于0.5%DMSO)。每周监测血糖。对血清进行肌酐和血尿素氮分析。第28天,取出肾脏,用H&E染色进行常规组织病理学观察。结果:肾脏的组织病理学变化与生化值一致。瓦西辛治疗有助于恢复肾脏组织结构,皮质和髓质中有一些空泡区域,并显著降低血清肌酐和血尿素氮水平(分别为 p=0.01 和 p=0.180)。结论:从 Justicia adhatoda 中提取的瓦西辛可能有助于预防糖尿病肾病。
恶意化)。此外,此SWTA图案的稀疏耦合也能够模拟TN芯片上的两态神经状态机,从而复制了对认知任务必不可少的工作记忆动力学。此外,将SWTA计算作为视觉变压器(VIT)中的预处理层的整合,增强了其在MNIST数字分类任务上的性能,证明了改进的概括性对以前看不见的数据进行了改进,并提出了类似于零量学习的机制。我们的方法提供了一个将大脑启发的计算转换为神经形态硬件的框架,并在英特尔的Loihi2和IBM的Northpole等平台上使用了潜在的应用。通过将生物物理精确的模型与神经形态硬件和高级机器学习技术集成,我们是将神经计算嵌入神经ai系统中的全面路线图。
摘要 — 具有超低功耗无线电功能的低成本设备是智能设备面临的主要挑战,而智能通信需要永久开启的接收器。本文提出了一种唤醒无线电,它具有神经形态预处理系统,均偏置在弱反转区。该系统能够接收 2.4 GHz 信号、对其进行解调,并根据神经元的尖峰频率识别位模式。在 1.2 nW 的总功耗下获得了显著的性能,这比传统的 RF 包络检测器至少低三个数量级。此外,输入功率的尖峰频率响应表明,所提出的系统可以区分 2.4 GHz 的不同信号。所提出的系统实现了 1.2 pJ/bit 的能效,最小可检测信号为 -27 dBm。索引术语 — 包络检测器、神经形态传感器、物联网设备、超低功耗。