随机性的功能理论是在Vovk [2020]中以非算力的随机性理论的名义提出的。Ran-Domness的算法理论是由Kolmogorov于1960年代启动的[Kolmogorov,1968年],并已在许多论文和书籍中开发(例如,参见Shen等人。2017)。它一直是直觉的强大来源,但其弱点是对特定通用部分可计算函数的选择的依赖性,这导致其数学结果中存在未指定的加性(有时是乘法)常数。Kolmogorov [1965,Sect。 3] speculated that for natural universal partial computable functions the additive constants will be in hun- dreds rather than in tens of thousands of bits, but this accuracy is very far from being sufficient in machine-learning and statistical applications (an addi- tive constant of 100 in the definition of Kolmogorov complexity leads to the astronomical multiplicative constant of 2 100 in the corresponding p-value). 与VOVK [2020]中提出的未指定常数打交道的方式是表达有关随机性算法作为各种函数类之间关系的算法。 它将在教派中引入。 2。 在本文中,我们将这种方法称为随机性的功能理论。 虽然它在直观的简单性方面失去了一定的损失,但它越来越接近实用的机器学习和统计数据。 读者将不会假设对随机性算法理论的形式知识。 在本文中,我们有兴趣将随机性的功能理论应用于预测。 3。Kolmogorov [1965,Sect。3] speculated that for natural universal partial computable functions the additive constants will be in hun- dreds rather than in tens of thousands of bits, but this accuracy is very far from being sufficient in machine-learning and statistical applications (an addi- tive constant of 100 in the definition of Kolmogorov complexity leads to the astronomical multiplicative constant of 2 100 in the corresponding p-value).与VOVK [2020]中提出的未指定常数打交道的方式是表达有关随机性算法作为各种函数类之间关系的算法。它将在教派中引入。2。在本文中,我们将这种方法称为随机性的功能理论。虽然它在直观的简单性方面失去了一定的损失,但它越来越接近实用的机器学习和统计数据。读者将不会假设对随机性算法理论的形式知识。在本文中,我们有兴趣将随机性的功能理论应用于预测。3。机器学习中最标准的假设是随机性:我们假设观察值是以IID方式生成的(独立且分布相同)。先验弱的假设是交换性的假设,尽管对于无限的数据序列而言,随机性和交换性证明与著名的de Finetti代表定理本质上是等效的。对于有限序列,差异是重要的,这将是我们教派的主题。我们开始讨论在教派中预测的随机性功能理论的应用。2。在其中介绍了置信度预言的概念(稍微修改和推广Vovk等人的术语。2022,Sect。2.1.6)。然后,我们根据三个二分法确定八种置信预测因素:
尽管有一些经验方法可以预测表面沉降,但理论分析很少见,而且初步[1-4]。修改的经验啄式公式用于预测水丰富的沙质鹅卵石地层中的表面沉降[5]。lu等。[6]提出了一个基于表面沉降的大量观察数据的高斯函数模型,该模型可以描述表面沉降的几何形状。基于Mair的理论,Yang等。 [7]提出了一种用于在表面和地下土壤长期沉降的计算方法,而Macklin [8]使用负载因子参数来预测体积损失。 所有经验方法都有明显的局限性,它们需要所有难以获得的隧道条件。 尽管许多科学家一直在试图开发普遍的理论[9-11],但没有明确的成功,这是极其困难的。 通过多功能数值方法提供了一种替代方法[12-14],但是未知的边界条件和未知的地面特性阻止了实际应用中成功的数值分析。 大数据理论和机器学习成为一个热门话题,因为它们在大多数复杂问题上的多功能应用程序[15-19]。 尽管在预测表面结算方面取得了一些成功[20-22],但机器学习方法不是隧道过程的选择方法,因为丢失的数据使实时预测不可能。基于Mair的理论,Yang等。[7]提出了一种用于在表面和地下土壤长期沉降的计算方法,而Macklin [8]使用负载因子参数来预测体积损失。所有经验方法都有明显的局限性,它们需要所有难以获得的隧道条件。尽管许多科学家一直在试图开发普遍的理论[9-11],但没有明确的成功,这是极其困难的。通过多功能数值方法提供了一种替代方法[12-14],但是未知的边界条件和未知的地面特性阻止了实际应用中成功的数值分析。大数据理论和机器学习成为一个热门话题,因为它们在大多数复杂问题上的多功能应用程序[15-19]。尽管在预测表面结算方面取得了一些成功[20-22],但机器学习方法不是隧道过程的选择方法,因为丢失的数据使实时预测不可能。
摘要。在目前的工作中研究了空间持有人颗粒(SHP)分形分布对浸润制造的铝泡沫孔隙率的影响。物理模型用于估计铝泡沫孔隙率,模拟具有不同粒径和相对数量的双峰混合物的SHP分布。将这些模型的结果与数学模型进行了比较,并将使用332个Al-Al-Aloy碱基材料和NaCl晶粒作为SHP制造的实验铝泡沫获得的结果。实现泡沫结构表征,以获得孔隙率,密度,壁厚和分形尺寸,而机械表征则集中在压缩年轻模量上。表明,可以生产具有不同分形孔隙率和多种单位细胞的泡沫,最大约为68%。还发现,随着细颗粒分数的增加,孔壁厚度显着降低。此外,所有模型都以最大的孔隙率呈现出峰值,其值增加并转移到低颗粒分数,大小比的增加。对于低粒径比的实验泡沫也观察到了这种行为。然而,对于更高的大小比率,孔隙率显示出归因于混合过程的不规则行为。
和飞行工程师。为了帮助解决这种情况,所有油尺上都刻有交叉影线图案,以使结果更容易读取。我们在螺旋桨上进行的测试表明它们更容易读取。图 2 显示了新设计。强调了这一点的重要性。即使在温暖的日子里,油位在仅仅 45 分钟后就下降了 1/2 英寸。因此,如果一名技术人员在 �������������� �������� �������� ���� �������� ��� ���������� 技术人员在 ������������ 关机 20 分钟后开始检查液位,并且需要 40 分钟来维修所有四个
传统上,光子设备的建模涉及求解光 - 膜相互作用和光传播的方程。在这里,我们通过使用量子计算机重现光学设备功能来演示另一种建模方法。作为例证,我们模拟了薄膜上的光的量子干扰。这种干扰可以导致通过薄膜的完美吸收或总传输光,这种现象吸引了对经典和量子信息网络中数据处理应用的关注。,我们将光子在干扰实验中的行为映射到Transmon的量子状态的演变,Transmon是IBM量子计算机的超导电荷矩形。实际光学实验的细节在量子计算机上无效地复制。我们认为,这种方法的优势在建模复杂的多光子光学效果和设备方面应该显而易见。
200 200 200 590 320 280 12 23 M20 22 330 290 12 23 M20 22 480 65 300 10 330 230 320 205 155 - - 56 - TW36 M24 M16 M20 131.8 133.8
[背景和目标] 原生生物是一类生物,占真核生物系统发育多样性的大部分,存在于地球的所有环境中,包括土壤、海洋和湖泊。在水生生态系统中,它们作为重要的初级生产者、初级消费者和分解者,在微生物循环中发挥着重要作用。此外,底栖和附生原生动物是鱼类和甲壳类动物的直接食物,因此对生态系统内的营养循环做出了巨大贡献。因此,了解原生生物群对于更深入地了解该环境中的整个生态系统至关重要。针对深海、南极洲和海洋等环境的原生动物生物群的详细分析已经有很多报道,但是对于涵盖陆地上所谓熟悉的普通环境(普遍环境)中的许多生物群的详细分析却知之甚少。霞浦湖是日本第二大海底湖,平均深度为4米,堪称普遍淡水环境的代表性湖泊之一。自 1976 年以来,日本国立环境研究所 (NIES) 一直在霞浦湖的 10 个点对水质和生物群落进行长期监测。然而,在其中两个地点,对原生动物生物群的调查仅限于使用光学显微镜进行的目视识别,尚未报告DNA水平的详细分析。此外,由于仅收集了地表水样本,对底栖原生动物和附生原生动物的研究不足。 在本研究中,除了在显微镜下进行形态观察外,我们还使用环境 DNA 分析来研究原生动物生物群,包括底栖生物和固着生物,目的是进一步增强对霞浦湖生态系统的了解的基础。 [方法] ○ 调查地点及抽样方法