摘要:通过直接沉积制备的双金属结构由于异种金属的组织和性能突然变化而存在缺陷。激光金属沉积(LMD)-电弧增材制造(WAAM)工艺可以通过沉积功能梯度材料(FGM)层(例如使用LMD的薄中间层)来缓解两种不同材料之间的缺陷,并可用于使用WAAM以较高的沉积速率和相对较低的成本制备双金属结构。本研究进行了LMD-WAAM工艺,并研究了制备的IN625-SUS304L双金属结构的微观组织。LMD-WAAM样品的FGM区的微观组织主要为细小的等轴枝晶形貌。相反,WAAM区构成了粗大的柱状枝晶形貌。LMD-WAAM样品的主要合金元素的成分随着沉积层高度而逐渐变化。 LMD-WAAM 样品的显微硬度随 Inconel 含量的增加而增加。对于 LMD-WAAM 样品,断裂发生在 25% IN625 和 0% IN625 之间的界面附近;对于 WAAM 样品,最终断裂发生在界面附近的 SUS304L 中。LMD-WAAM 样品的拉伸强度与激光功率成反比。结果表明,LMD-WAAM 样品的拉伸强度比仅使用 WAAM 制造的样品高 8%。
1 化学系,APCMahalaxmi 学院,Thoothukudi,泰米尔纳德邦,隶属于 Manonmaniam Sundaranar 大学,Tirunelveli,泰米尔纳德邦,印度 2 化学系,VOChidambaram 学院,Thoothukudi,泰米尔纳德邦,印度 *通讯作者:kalaponpriya@gmail.com 摘要 三氧化钨 (WO 3 ) 已被证明具有可见光光活性,并提供了一种克服光催化剂(如二氧化钛)对紫外光依赖性的方法。在本研究中,通过化学共沉淀法成功制备了镉离子掺杂的 WO 3 纳米粒子。以氯化镉和钨酸钠溶液为前体。通过 UV、XRD、FESEM、EDAX 和 PL 光谱技术表征了 Cd 离子掺杂的 WO 3 纳米粒子的晶体结构和光学特性。 Cd 离子掺杂的 WO 3 纳米粒子的形貌研究揭示了晶体状形貌。能量色散分析证实了 Cd 离子在掺杂的 WO 3 晶格中的存在。从 WO 3 的紫外-可见光谱来看,Cd 离子掺杂的 WO 3 纳米粒子在 310 nm 和 320 nm 处表现出吸收。XRD 光谱显示衍射峰对应于结晶氧化钨的晶面。使用 Debye scherrer 公式,还计算了未掺杂和 Cd 离子掺杂的氧化钨纳米粒子的尺寸。通过 PL 光谱研究了制备的纳米粒子的光学特性。
HER 动力学缓慢,而 Ni 则具有一些积极特性,例如高导电性、稳定性和相对较高的地球丰度。[1,3] 自 20 世纪 60 年代以来,人们做出了巨大努力来提高 Ni 基电催化剂的催化活性,采用了各种有希望的候选材料,例如镍的氢氧化物、二硫属元素化物、磷化物、碳化物等。[1,4] 通常,可以通过调整催化剂的形貌(例如,生产纳米线、纳米片、纳米颗粒等)来增加活性表面积,以及改善可用活性位点的固有活性(例如,通过合金化、掺杂、缺陷工程等)来增强催化活性。对于镍而言,形成合金是改变形貌和内在活性的常用策略,其中 NiCo、NiFe 和 NiMo 混合物已被鉴定为很有前途的 HER 电催化剂。[2b,4,5] 多组分合金的使用是二元体系的自然延伸,其中已经研究了三元合金,例如 CuAlNi、NiMoFe 和 NiMoW[2b,4],尽管每种金属的作用尚不完全清楚。在常见的 Ni 合金中,NiFe 混合物通常表现出更好的催化性能,特别是,在这些合金中添加 Mo 可以降低起始电位,这是由于有利的氢-金属相互作用和增加活性位点的数量。[4,6] 因此,NiFeMo 合金是最有前途的 HER 电催化剂之一,主要通过热液工艺[7]或电沉积生产。 [8] 合成技术的选择对催化剂的形貌有显著的影响,一般来说,不同的合成技术具有不同的最佳 Ni:Fe:Mo 金属比。此外,这些技术的特点是产量低、材料负载有限,使其在大规模应用中的使用变得复杂。因此,寻找一种能够生产三金属合金的可扩展技术对于氢经济的发展至关重要。溶液前体等离子喷涂 (SPPS) 是一种很有前途的技术,它有可能生产出各种具有适合作为电催化剂的特性的涂层 [9]。因此,在本研究中,我们表明,在等离子喷涂过程中使用含有 Ni、Fe 和 Mo 金属盐的液体前体
研究发现,通过激光粉末床熔化增材制造 (LPBF) 熔化 316 L 不锈钢后,从熔池中喷出的飞溅颗粒具有在雾化 316 L 粉末中未观察到的形貌。该飞溅由大球形颗粒、高度树枝状的表面、带有吸积液体盖子的颗粒以及在凝固前由液带固定在一起的多个单个颗粒的聚集体组成。本研究的重点是另一种独特的飞溅形貌,它由较大的球形颗粒组成,其表面氧化斑点表现出广泛的表面结构分布,包括有组织的图案。使用多种成像技术对具有有组织的表面氧化物图案的飞溅颗粒的表面和内部颗粒特征进行了表征。观察结果如下:1)斑点位于飞溅颗粒表面,未明显渗透到内部,2)斑点为非晶态,富含硅(Si)-锰(Mn)-氧(O),3)颗粒和斑点之间存在两部分富含铬(Cr)-O的层,4)斑点的顶面存在富含Cr-O的形态特征,5)飞溅颗粒的成分与316L一致,但远离斑点处飞溅颗粒中的Si含量似乎有所降低,6)飞溅颗粒内部存在小的富Si球形颗粒。
然而,令人印象深刻的高 PCE 是使用氮气中不可升级的旋涂法从小面积电池(< 1 cm 2 )获得的。[1–3] 为了使 PSC 具有商业可行性,开发在环境空气中低成本大面积制造工艺势在必行。工业上可用于大面积涂覆的许多工艺,例如浸涂、刮刀涂覆和狭缝模涂覆等。其中,狭缝模涂覆是优选的,因为它可以精确控制涂层厚度和溶液使用量(即材料浪费最少)。[4–7] 狭缝模涂覆也适合用于连续工艺,这可以进一步降低制造成本。高性能 PSC 已经通过刮刀涂覆、狭缝模涂覆和喷涂等可扩展工艺制造出来。[8–14] 然而,大多数研究集中在受控环境下的钙钛矿层处理。关于在环境空气中操作的可扩展工艺的报道有限。 [15–18] 常用的 pin 型 PSC 结构包含通过溶液工艺沉积的四层,这四层包括空穴传输层 (HTL)、光吸收钙钛矿层、电子传输层 (ETL) 和功函数调节层 (WFL)。首先,为实现可扩展的工艺,每层加工过程中使用的所有溶剂都应无毒。[19–21] 然后,在每层的合适化学组成、溶剂类型、薄膜形貌控制、层间兼容性、每层的稳定性之间的平衡以拥有可行的环境空气处理系统在科学和工程方面都是相当具有挑战性的。PSC 每层的薄膜形貌和兼容性由每层的化学组成和工艺条件控制。对于钙钛矿层,薄膜形貌由溶剂蒸发和结晶的动力学速率决定。[22–23] 对于旋涂,大多数溶剂通过涂布机旋转和反溶剂滴落迅速去除。 [24] 但狭缝涂布的溶剂挥发速度低于旋涂。[17,25–26] 采用反溶剂浴、气体淬火和预热基片法等策略来增加溶剂挥发速度。[11,27–31] 虽然可以实现高PCE器件,但结果仅限于小面积基片。如果
该氧化还原反应对应的理论容量约为 890 mAh·g −1 [1-4]。然而,与硅和锡材料类似,TMO 电极的储锂反应在锂化-脱锂过程中会伴随着较大的体积变化[1-4,6],但其体积变化不太显著[1]。这可能会导致电极粉碎,随后活性材料会从集流体上脱落。此外,Co 3 O 4 电极材料的离子和电子电导率较低,导致其充电/放电速度相对较慢[2,4]。为了克服上述缺点,已经提出了一些策略。其中一种方法是形成由 Co3O4 和不同材料组成的复合材料,包括碳基材料,例如石墨烯[7,8]、碳纳米管[9]、碳涂层[10]、竹荪衍生的碳[11]或其他过渡金属氧化物[12]。这种方法通常可以提高电导率,有时还可以减轻体积变化的影响。然而,同时会导致 Co3O4 容量下降。另一种策略与合成程序有关,该合成程序可以生产具有各种形状和形貌的纳米级 Co3O4 材料。已证实,当 Co3O4 材料具有小尺寸或适当的孔径分布和形貌(例如多孔或分级结构)或这两种特征的结合时,其电化学性能会得到改善[3,4]。到目前为止,已经提出了不同的合成方法,包括溶胶-凝胶法[4,6,13-15]、溶胶-电纺丝技术
摘要:本研究采用简单的一步水热合成方法合成了定义明确的稳定化 CuO 纳米花瓣,并通过先进的纳米表征技术研究了其表面,以增强光学和催化性能。透射电子显微镜 (TEM) 分析表征证实了高结晶度 CuO 纳米花瓣的存在,其平均长度和直径分别为 1611.96 nm 和 650.50 nm。纳米花瓣单分散,表面积大,形貌可控,并表现出具有单斜结构的纳米晶体性质。通过拉曼光谱和 X 射线衍射 (XRD) 图案确认了合成样品的相纯度。在 CuO 纳米花瓣中观察到高达 800 nm 的明显宽吸收和增加的带隙。利用 X 射线光电子能谱 (XPS) 测得 CuO 表面的价带 (VB) 和导带 (CB) 位置分别为 + 0.7 和 − 1.03 eV,这对于高效的催化性能非常有前景。此外,在过氧化氢 (H 2 O 2 ) 存在下获得的 CuO 纳米花瓣对黑暗条件下降解亚甲蓝 (MB) 具有优异的催化活性,90 分钟后的降解率 > 99%,明显高于文献报道的水平。增强的催化活性归因于单分散 CuO 纳米花瓣的形貌可控、H 2 O 2 的协同作用和能带结构。这项工作为环境改善的广泛应用机会提供了一种新方法。
金属泡沫因其独特的特性被认为是最新的吸声材料之一。通过确定吸声材料的结构特性来预测其声学行为是一种最有效的方法。不幸的是,直接测量这些参数通常很困难。目前,已经有声学模型显示吸声体形貌和吸声系数(SAC)之间的关系。通过优化对SAC有效的参数,可以获得每个频率下的最大SAC。在本研究中,使用基准测试方法,在MATLAB编码软件中验证了Lu提出的模型。然后,使用局部搜索算法(LSA)对金属泡沫形貌参数进行优化。优化参数有三个因素,包括孔隙率、孔径和金属泡沫孔开口尺寸。优化应用于500至8000 Hz的宽频带。预测值与Lu模型得到的基准数据一致。在 500 至 800 Hz 的频率范围内,孔隙率为 50% 至 95%,孔径为 0.09 至 4.55 mm,孔开口尺寸为 0.06 至 0.4 mm,可获得最高的 SAC。在大多数频率下,孔开口尺寸的最佳量为 0.1 mm,可获得最高的 SAC。结论是,所提出的 LSA 方法可以根据 Lu 模型优化影响 SAC 的参数。所提出的方法可以作为优化金属泡沫微观结构参数以提高任何频率下的 SAC 的可靠指导,并可用于制造优化的金属泡沫。
聚合物太阳能电池(PSC)因其机械柔性、重量轻和大规模卷对卷制造等优势,作为一种有希望的可再生能源技术而备受关注。近年来,PSC 取得了长足的进步,这得益于新型光伏材料的开发和活性层形貌的调节。到目前为止,使用 p 型聚合物作为供体和 n 型小分子作为受体的 PSC 的光电转换效率(PCE)已超过 19%。其中,全 PSC 因其更高的热稳定性和机械柔性而被视为最有希望实现商业应用的候选材料之一。随着人们对聚合物受体材料的设计和合成投入巨大努力,包括苝二酰亚胺 (PDI)、萘二酰亚胺 (NDI)、B ← N- 桥联吡啶聚合物和聚合小分子受体 (PSMA),光伏性能得到了显着提高,PCE 超过 18%。与 PDI、NDI 和 B ← N 型聚合物受体相比,PSMA 因其吸收范围更广、吸收系数更强而受到更多关注。为了进一步提高全 PSC 的 PCE,合成高性能聚合物受体和精细调节活性层形貌至关重要。由于 Y 系列 SMA 在 PSC 中的巨大成功,一种广泛使用的合成聚合物受体的方法是聚合 Y 系列 SMA(图 1)。Wang 等人。 (2020) 报道了一种以 Y5-C20 为结构单元、噻吩为桥联单元的 PYT 窄带隙 PMSA,并详细研究了不同分子量对 PYT 光电性能和活性层形貌的影响。结果表明,中等分子量的 PYT 与 PM6 表现出合适的混溶性,有利于获得更均衡的载流子迁移率、更强的分子间聚集性、更有序的特性、更高的电荷传输能力和更少的能量损失,与低分子量和高分子量的 PYT 相比,其光伏性能提高了 13.44%。此外,当在分子主链上采用三种不同功能单元的无规共聚时,可以通过改变不同部分的摩尔比来轻松调节所得聚合物的能级和吸收光谱等光电性能。基于这一策略,Du 等人(2020) 通过随机共聚 3-乙基酯噻吩 (ET) 与 A-DA ' DA 型 SMA 单元 (TPBT-Br) 和噻吩桥联单元,合成了一系列三元共聚物 PMSAs PTPBT-ET xs。研究发现