Deseret Power最近在其一代产品组合,所罗门生成站和Bonanza Solar 1中添加了两个新资源。两项项目都采取了努力,以最大程度地减少不利的环境影响。的影响最小化,因为它是一种非发射和非水消费性生产资源,该资源是在Deseret已拥有的财产上建造的。所罗门生成站由六个带有往复发动机的发电机组成。对这些资源的影响被最小化,因为发动机旨在燃烧天然气,并配备了最佳的可用控制技术。在每个发动机上安装了选择性催化还原(SCR)和氧化催化剂系统,导致超低NOX和CO排放。NOX和CO的排放量减少了93%,而VOC的排放量则减少了50%。
1.13招标将按照附录-A的“向投标人的指示”约束;附录B上放置的“一般条款和条件”和附录D上的“技术规格”。该合同将受印度法律管辖,包括1872年的《印度合同法》; 1930年《商品销售法》; 2005年《信息权法》; 2006年《微型,中小型企业发展法》;预防腐败法,1988年;不时修改的1996年仲裁与和解法。该合同还将受2017年一般财务规则的管辖,用于2017年和2019年商品和工程的手册,财务权力规则的代表团以及任何其他财务,警惕,安全,安全,安全,反交易以及其他监管方面,订单和其他政府的订单和指南,以及公众在往复时间内都没有随时对公共采购的主题进行了预期,并不是在适当的条件下进行适当的情况。
15. 补充说明 美国联邦航空管理局机场和飞机安全研发技术监测员是李晓功。 16. 摘要 这项技术调查是对无人机系统 (UAS) 中使用的各种推进系统的调查。讨论了 UAS 的现有和近期推进机制,例如往复活塞发动机、汪克尔转子发动机、燃气涡轮发动机、火箭动力系统、电动机和基于电池的系统。还讨论了使用质子交换膜燃料电池、光伏电池、超级电容器和螺旋桨的系统。每个系统都参考更大的概念框架进行描述,并描述了采用该系统的现有 UAS 的实例和概况。确定了每种推进系统的优缺点以及相关的技术问题及其在 UAS 环境中的各自适用性,所有这些都是针对对 UAS 的监管和将其引入国家空域系统的关注而描述的。 17. 关键词 UAS、无人机、无人、推进、发动机、马达、动力
摘要:可再生能源在氢的有效运输上的广泛采用。在非润滑操作中,往复活塞压缩机技术将发挥关键作用,确保高流量和压缩比。这些系统依赖于使用高级纤维增强聚合物的高级高强度密封解决方案,用于活塞和杆填充环。聚苯乙烯硫(PPS)聚合物基质复合材料已在摩擦学应用中使用,并有望高机械强度和耐磨性。提出的工作描述了碳和玻璃纤维增强的PPS矩阵聚合物,其特征是在非润滑操作下研究其特性和在往复式压缩机中应用的互补方法。使用高级X射线和电子成像技术的微观结构分析支持热力学和摩擦学测试。给出了有关纤维材料,界面强度和纤维增强聚合物的定向的新见解。得出了不同PPS基质复合材料对高压氢压缩应用的适用性的结论。
摘要 为了设计在极端条件下(包括长期太空任务)可靠运行的运动机械部件,需要对候选材料、表面处理和干膜润滑剂进行多元摩擦学评估。在本研究中,使用球对平试验收集了线性往复或单向滑动摩擦数据。球是硬化的 440C 不锈钢(未涂层或溅射 MoS 2),平面是 440C 不锈钢、Nitronic 60 不锈钢或 Ti6Al4V 钛合金,并经过各种表面处理和/或干膜润滑剂。表面处理包括阳极氧化、氮化和电火花加工。干膜润滑剂包括 Microseal 200-1、溅射 MoS 2 和纳米复合涂层 i-Kote。数据包含测试期间施加的法向载荷、测得的摩擦力、计算的摩擦系数、球位置、环境温度和相对湿度。测试在 300 至 2000 MPa 的不同峰值赫兹接触压力条件下进行。表面处理和干膜涂层后在 150 °C 下真空烘烤的平面以及在惰性气体(氮气)环境中测试的样品的数据也可用。这些数据既可用于从根本上了解不同材料系统的摩擦学特性,也可用于设计适合特定应用、条件和工作周期的组件。
背景/目的:使用传统方法检查镍钛旋转器械的静态扭矩与临床情况相矛盾,而且该方法对于顺时针和逆时针旋转运动的有效性值得怀疑。本研究旨在使用临床扭矩极限设置在静态/动态测试条件下检查不同运动学对 JIZAI 器械 (#25/.04) 扭转行为的影响。材料和方法:在静态测试中,将 JIZAI 的 5 毫米尖端固定在圆柱形虎钳中,并以自动扭矩反转、最佳扭矩反转 (OTR) 或往复 (REC) 进行连续旋转 (CR) 直至断裂(各 n Z 10)。在动态测试中,使用单长度技术使用 JIZAI 和 CR、OTR 或 REC 对直根管和严重弯曲根管进行器械治疗(各 n Z 10)。使用带有扭矩/力测量单元的自动塑形装置记录断裂时的静态扭矩、断裂时间 (T f )、动态扭矩和旋入力。使用单因素方差分析或带有 Bonferroni 校正的 Kruskal e Wallis 检验和 Mann e Whitney U 检验进行统计学分析 (⍺ Z 0.05)。结果:运动学不影响静态或动态扭矩 (P > 0.05);然而,确实影响直根管中的旋入力 (P < 0.05)。REC 具有明显较长的 T f ,而严重弯曲的根管在 CR 中产生明显更大的扭矩和旋入力 (P < 0.05)。结论:在目前的实验条件下,扭矩以外的参数对不同的运动学表现出明显的影响。 OTR 的动态扭矩和旋入力与其他旋转模式相似,不受管道弯曲度的影响。
振动技术简介 Dennis H. Shreve 市场总监 IRD Mechanalysis, Inc. 哥伦布,俄亥俄州 43229 1994 年 11 月 背景 某种机器几乎用于我们日常生活的每个方面;从我们在家中使用的吸尘器和洗衣机,到用于制造我们日常使用的几乎所有产品的工业机械。当机器发生故障或损坏时,后果可能包括烦恼、经济灾难、人身伤害甚至生命损失。因此,及早发现、识别和纠正机械问题对任何参与工业机械维护的人来说都是至关重要的,以确保持续、安全和高效的运行。本文向您介绍了机械振动的使用和多年来开发的技术进步,使人们不仅可以检测到机器何时出现问题,还可以识别问题的具体性质以安排纠正。振动作为机械状况的指标 您曾多少次触摸过机器以查看它是否“运转正常”?凭借经验,您已经形成了对机械振动的正常和异常的“感觉”。即使是最没有经验的驾驶员也知道方向盘振动或发动机摇晃时一定出了问题。换句话说,将机器的状况与其振动水平联系起来是很自然的。当然,机器振动是正常的。即使是运行状况最好的机器也会因为一些小的、轻微的缺陷而产生一些振动。因此,每台机器都会有一定程度的振动,这些振动可能被视为正常或固有的。但是,当机械振动增加或变得过度时,通常是由于某些机械故障造成的。振动不会无缘无故地增加或变得过度。导致振动的原因有多种 - 不平衡、错位、齿轮或轴承磨损、松动等。由于并非每个人都拥有根据感觉判断机器状况所需的长期经验,因此多年来已经开发了各种仪器来测量实际的振动水平或振动量。此外,人类对触觉和感觉的感知有些有限,并且有许多常见问题(例如轴承和齿轮故障的早期阶段)通常超出了人类感知的范围。因此,用于测量旋转和往复机械振动的现代仪器不仅可以最大限度地减少对丰富经验的需求,而且可以检测到超出人类触觉和听觉范围的正在发展的问题。此外,人类的感知因人而异。一个人可能认为不好的事情,另一个人可能认为是正常的。试图用人类的感知来预测机械状况的变化趋势几乎是不可能的,因为几乎不可能用一个记录的数字来描述“感觉如何”。为了解决这个问题,人们开发了仪器来实际测量机器的振动水平并为其分配一个数值。这种工具不仅克服了缺乏经验的局限性,而且还解决了人类感知的局限性。
机械工程工程数学线性代数:矩阵代数,线性方程系统,特征值和特征向量。微积分:单个变量,极限,连续性和不同性,平均值定理,不确定形式的功能;评估确定和不当积分;双重和三个积分;部分衍生物,总导数,泰勒序列(一个和两个变量),最大值和最小值,傅立叶序列;梯度,差异和卷曲,矢量身份,方向衍生物,线,表面和体积积分,高斯的应用,Stokes和Green定理。微分方程:一阶方程(线性和非线性);具有恒定系数的高阶线性微分方程; Euler-Cauchy方程;初始和边界价值问题;拉普拉斯转变;热,波和拉普拉斯方程的解决方案。复杂变量:分析函数; Cauchy-Riemann方程;库奇的整体定理和整体公式;泰勒和洛朗系列。概率和统计:概率的定义,采样定理,条件概率;卑鄙,中位数,模式和标准偏差;随机变量,二项式,泊松和正常分布。数值方法:线性和非线性代数方程的数值解;通过梯形和辛普森的规则进行集成;微分方程的单步和多步法。应用力学和设计工程机制:自由图和平衡;摩擦及其应用,包括滚动摩擦,Belt-Pulley,刹车,离合器,螺丝千斤顶,楔子,车辆等。;桁架和框架;虚拟工作;平面运动中刚体的运动学和动力学;冲动和动量(线性和角度)以及能量配方;拉格朗日方程。材料力学:应力和应变,弹性常数,泊松比; Mohr的圆圈,用于平面应力和平面应变;薄缸;剪切力和弯矩图;弯曲和剪切应力;剪切中心的概念;梁的挠度;圆形轴的扭转;欧拉的专栏理论;能量方法;热应力;应变仪和玫瑰花结;通过通用测试机对材料进行测试;测试硬度和影响力。机器理论:平面机制的位移,速度和加速度分析;链接的动态分析;凸轮;齿轮和齿轮火车;飞轮和州长;往复和旋转质量的平衡;陀螺仪。振动:单个自由系统的自由和强迫振动,阻尼的效果;振动隔离;谐振;轴的关键速度。机器设计:用于静态和动态加载的设计;失败理论;疲劳强度和S-N图;机器元素的设计原理,例如螺栓,铆接和焊接接头;轴,齿轮,滚动和滑动接触轴承,刹车和离合器,弹簧。流体力学和热科学流体力学:流体特性;流体静态,淹没物体的力,浮动物体的稳定性;质量,动量和能量的控制体积分析;流体加速度;连续性和动量的微分方程;伯努利方程;维度分析;不可压缩的流体,边界层,基本湍流,流过管道,管道损失,弯曲和配件的粘性流动;可压缩流体流量的基础。传热:传热模式;一维热传导,抗性概念和电类比喻,通过鳍的传热;不稳定的热传导,集总参数系统,Heisler的图表;热边界层,自由和强制对流传热中的无量纲参数,扁平板上流动和通过管道的传热相关性,湍流的影响;热交换器性能,LMTD和NTU方法;辐射传热,Stefanboltzmann定律,WIEN的位移定律,黑色和灰色表面,视图因素,辐射网络分析热力学:热力学系统和过程;纯物质的特性,理想和真实气体的行为;零和热力学的第一定律,在各种过程中的工作和热量计算;热力学的第二定律;热力学特性图表和表,可用性和不可逆性;热力学关系。
博帕尔。摘要- 近年来,铝合金在活塞制造中的应用引起了广泛关注,因为它比铸铁等传统材料具有许多优势。本综述旨在全面分析铝合金在活塞制造中的应用,重点介绍其机械性能、性能和潜在挑战。铝合金活塞的主要优势在于其重量轻,有助于减少往复质量并提高发动机效率。这一特性可以提高发动机转速、降低油耗并提高车辆整体性能。此外,铝合金活塞具有出色的导热性,有助于高效散热并最大限度地降低热膨胀相关问题的风险。关键词-铝合金、活塞、强度、综述、变形、温度分布。1. 简介铝活塞重量轻,因此与铸铁活塞相比,惯性力可以降低到更大程度。在 Al-Si 活塞合金中添加超过 12% 的硅以在高温下工作,因此由于添加 Si,活塞的热强度可以提高。发动机运转时活塞顶部的温度达到约 300°C,在此温度范围内膨胀程度超过铁,因此,为了将铝活塞与铸铁气缸正确配合,活塞在室温下必须松配合。添加硅会使活塞变硬,不易磨损,因此增加了基于纤维和基质成分百分比可实现的优势。MMC 的缺点是 a) 生产系统昂贵,b) 技术仍然相对不成熟,c) 生产过程复杂(尤其是长纤维 MMC),d) 专门生产服务的经验有限,e) 在颗粒 MMC 的情况下难以实现纤维颗粒的适当扩散,f) 颗粒分布不一致,g) 长纤维充当应力集中器,h) 不均匀性质和 i) 各向异性材料。这些缺点限制了金属基复合材料在汽车应用中的使用。除了用于活塞的先进材料外,还采用一些涂层来改善活塞性能。这些涂层技术将在下一节中讨论。过去几十年的研究和创新催生出复合材料,从用于汽车车身的玻璃纤维发展到用于航空航天和其他各种应用的颗粒复合材料。有些复合材料表现出更高的耐磨性、抗氧化性和抗腐蚀性。这些设计和特性机会是传统单片(非增强)材料无法实现的。复合材料在 20 世纪 70 年代被引入工程应用时被称为“未来材料”。由两种或两种以上可明显识别的成分组成的材料在日常生活中被用作天然复合材料。天然复合材料包括木材、土壤骨料、矿物、岩石等。复合材料是最具创新性的材料,由于材料性能的增强,它取代了航空航天、汽车、结构工程等领域的传统材料。这些复合材料是通过传统的金属生产和加工现场生产的。碳化物含量高的钢或石墨以及含有金属粘合剂、碳化钨和碳化物也属于这类复合材料。2. 现有文献综述在文献综述的基础上,重点介绍了研究空白。此外,本章最后还提出了研究目标。Singh 等人 [1] 本文的目的是研究铝和镁合金活塞的应力分布和热分析。在室温下,WE43A 的强度低于 Al-7Si 活塞,但在高温下,由于 WE43A 的机械和热性能优于 Al-7Si,因此可以承受更高的效率。因此,可以得出结论,对于热负荷相对较高的高性能发动机,镁合金是设计活塞的理想材料,但对于峰值压力高且作用时间较长的扭矩型发动机,铝基合金是设计活塞的理想材料。Taylor 等人 [2] 强调了汽车内燃机主要摩擦部件的摩擦学设计的重要性。可以得出这样的结论:对于热负荷相对较高的高性能发动机,镁合金是设计活塞的理想材料,但对于峰值压力高且作用时间较长的扭矩型发动机,铝基合金是设计活塞的理想材料。Taylor 等人 [2] 强调了汽车内燃机主要摩擦部件的摩擦学设计的重要性。可以得出这样的结论:对于热负荷相对较高的高性能发动机,镁合金是设计活塞的理想材料,但对于峰值压力高且作用时间较长的扭矩型发动机,铝基合金是设计活塞的理想材料。Taylor 等人 [2] 强调了汽车内燃机主要摩擦部件的摩擦学设计的重要性。