本研究调查了一种纤维缠绕管模型,该模型结合了纤维缠绕过程中的纤维波动。使用线性范围内的有限元法分析了该模型,然后与壳模型和径向挤压实验进行了比较。结果表明,由于加入了纤维波动特征,实体模型预测径向压缩刚度的准确度高于壳模型。该模型是开发复合材料压力容器模型的第一步,在这种模型中纤维波动更为频繁,也用于预测故障起始和损伤扩展。2025 作者。由 Elsevier Ltd 代表制造工程师协会 (SME) 出版。这是一篇根据 CC BY 许可 ( http://creativecommons.org/licenses/by/4.0/ ) 开放获取的文章。
“我们现在可以研究许多材料在相同极端压力下的反应,”SNAP 的发起人、桑迪亚国家实验室科学家艾丹·汤普森 (Aidan Thompson) 表示。“应用包括行星科学问题——例如,什么样的撞击应力会导致月球的形成?它也为在极端条件下设计和制造新型材料打开了大门。”极端压力和温度对材料的影响对于设计巨行星的内部模型也很重要。桑迪亚国家实验室的 Z 脉冲功率设施和劳伦斯利弗莫尔国家实验室的国家点火设施等强大的 DOE 设施可以在实验中重现这些星球的近乎相同的条件,这些实验可以近距离检查径向压缩材料。但即使是这些独一无二的强大机器也无法精确定位这些极端条件下关键的微观变化机制,因为在原子层面的诊断存在局限性。“只有计算机模拟才能做到这一点,”艾丹说。戈登贝尔奖入围作品是关于“一块微米大小的压缩钻石”