新罕布什尔州朴茨茅斯——第 64 空中加油中队 (ARS) 最近恢复运作,是新罕布什尔州皮斯空军国民警卫队基地 (ANGB) 唯一的现役中队。第 64 ARS 的主要任务是使用 KC-46 飞马加油机为飞机加油。我们的飞行员来自世界各地,在约 18 个月内将中队人数从 6 人增加到 135 人,工作涉及 37 个空军专业代码 (AFSC)。大多数职位都与新罕布什尔州的空军国民警卫队成员和文职人员紧密结合。尽管该中队与汉斯科姆空军基地 (AFB) 的第 66 空军基地大队距离很近,但出于行政和资金原因,该中队隶属于麦康奈尔空军基地的第 22 作战大队,而出于任务和行动原因,该中队隶属于第 157 空中加油联队 (ARW)。
为了履行为客户提供创新、可靠的卫星指挥和数据系统的使命,我们在先进的系统工程方法方面拥有丰富的经验。自德国空间运营中心 (GSOC, 1968) 成立以来,MCS 集团已为 20 多种不同类型的卫星建造和维护了 30 多个不同的指挥和地面控制系统,包括地球静止通信卫星、低空飞行的地球观测卫星、科学原型和载人航天卫星。为了满足我们对可持续、创新和可靠产品和服务的需求,我们的日常工作包括在会议和其他控制中心寻找突破性的解决方案,以及参加标准化委员会。由于我们与运营工程师的距离很近,并且积极参与运营,我们确保快速响应和发布时间,并直接从客户那里获得反馈。
血管内连接。[34] 血管内神经调节是一种新兴技术,代表了介入神经学和神经工程的综合。典型的血管内神经接口是一种支架电极阵列,可通过经皮导管静脉造影植入上矢状窦,并通过经静脉导线将信号传输到胸部皮下的接收器。鉴于脑血管与许多重要的大脑区域距离很近,脑血管系统是神经接口的一个有前途的管道。虽然以前从未将经静脉导线植入人脑,但可以从心脏电疗设备的文献中吸取有关经静脉导线的安全性和设计特征的经验教训。颅内静脉系统是神经调节设备的一个有前途的领域。正在进行的 SWITCH 试验将在 5 名患者中测试支架电极阵列的可行性和安全性,随访期为 12 个月。[28,34]
好莱坞是一个充满活力的商业中心,地理位置优越,方便前往 95 号州际公路、佛罗里达收费公路以及 FEC 和 CSX 铁路。这座城市是埃弗格雷兹港的所在地,埃弗格雷兹港是世界顶级邮轮港口之一,也是美国最活跃的集装箱货运港口之一。该市拥有两座国际机场:迈阿密国际机场和劳德代尔堡-好莱坞国际机场 - 后者距离好莱坞很近,与该市同名。纪念医疗系统是全美最大的公共医疗网络之一,其总部设在好莱坞,其旗舰医院纪念区域医院和顶级儿童医院乔·迪马乔儿童医院也设在好莱坞。此外,南佛罗里达州的创业生态系统也蓬勃发展。据大劳德代尔堡联盟称,布劳沃德县再次被评为全美第二大商业环境最佳县。
如果图像足够小,仅落在中央凹的中心,则依赖于 S 视锥细胞的颜色辨别能力将受到损害。图 3.3 对此进行了说明。当观察距离很近时,每个圆圈的视角都对应几度,具有正常色觉的人很容易区分黄色和白色以及红色和绿色。但是,从几英尺远的地方观察,黄色和白色将无法区分。这被称为小视野三色盲,因为三色盲是完全缺乏 S 视锥细胞的人。无论图 3.3 中的黄色和白色有多大,三色盲都无法区分它们。在某些小视野下,即使是正常人也会表现得像三色盲。请注意,即使从远处看,红绿对仍然可以辨别,因为 S 锥体对于这种辨别不是必需的。因此,小视野效应仅限于依赖于 S 锥体 5 的辨别。(注意:由于再现颜色的技术困难,具有正常色觉的人可能仍然能够辨别远处的黄色和白色半圆。)
摘要 — 更高的片上电流需求会导致供电网络的功率效率降低,这是由于电流路径内的分布损耗造成的。高压电源架构和封装内稳压器 (VR) 拓扑可以通过减少分布损耗来提高系统功率效率。然而,由于高压注入和与敏感电子设备的距离很近,电磁干扰 (EMI) 可能是一个重大挑战。本文介绍了一种具有分布式拓扑的新型基于变压器的电感、电感、电容 (LLC) 谐振转换器,用于负载点直流-直流转换。与具有相同降压比的单分支 LLC 谐振转换器相比,分布式拓扑的 EMI 降低了 3 倍以上。已经开发出封装内 VR 的原型。实验结果证明其与 EMI 分析具有良好的相关性。由于这种分布式转换器系统的 EMI 较低,因此适合应用于系统级封装、无线设备和物联网。
长期径流预报以日历年径流预报的形式呈现。爱荷华州苏城以上密苏里河流域(上游流域)的日历年径流预报可在此处获得。此预报在每个日历年开始后不久制定,并在每个月初更新,以显示该年历史月份的实际径流和该年剩余月份的更新预报。此预报显示来自五个增量排水区域的每月流入量(以百万英亩英尺 (MAF) 为单位),这些增量排水区域由各个系统项目定义,再加上加文斯角大坝和爱荷华州苏城之间的增量排水区域。由于距离很近,因此将大弯和兰德尔堡排水区域合并在一起。提供了加文斯角大坝以上密苏里河流域总河段和上游流域的汇总。日历年径流预报用于月度研究模拟模型中,以规划未来的系统调节,以满足整个日历年的授权项目目的。
长期径流预测以日历年径流预测的形式呈现。此处提供爱荷华州苏城上方密苏里河流域(上游流域)的日历年径流预测。此预测在每个日历年开始后不久制定,并在每个月初更新,以显示该年历史月份的实际径流和该年剩余月份的最新预测。此预测显示来自五个增量排水区域的每月流入量(以百万英亩英尺 (MAF) 为单位),这些区域由各个系统项目定义,加上 Gavins Point 大坝和爱荷华州苏城之间的增量排水区域。由于距离很近,因此将 Big Bend 和 Fort Randall 排水区域合并。提供了 Gavins Point 大坝上方密苏里河流域总长度和上游流域的汇总。日历年径流预报用于月度研究模拟模型,以规划未来的系统调节,以满足全年授权的项目目的。
由于眼球运动发出的电信号与传感器距离很近,且出现频率很高,因此会在脑电图信号上产生非常强烈的伪影。在检测脑电图波形中的眨眼伪影以进一步去除和净化信号方面,文献中提出了多种策略。最常用的方法需要使用大量电极、复杂的设备来采样和处理数据。这项工作的目标是创建一种可靠且独立于用户的算法,用于使用 CNN(卷积神经网络)检测和去除脑电图信号中的眨眼。为了进行训练和验证,使用了三组公共脑电图数据。这三组数据都包含在招募的受试者执行指定任务时获得的样本,这些任务包括在特定时刻自愿眨眼、观看视频和阅读文章。本研究中使用的模型能够全面理解所有将普通脑电图信号与受眨眼伪影污染的信号区分开来的特征,而不会被仅在信号被记录的情况下出现的特定特征过度拟合。
本文介绍了 DLR 目前为支持空中加油自动化研究活动而开展的建模和仿真活动。在空中加油机动过程中,加油机和受油机需要飞得很近,这会导致它们之间产生非常显著的气动相互作用。两架飞机也会影响探头和锥套的运动,这也需要进行建模。本文概述了开发的模型和仿真基础设施、它们的主要功能以及生成支持此建模的数据所需的工作。与许多其他具有类似建模需求的工作不同,RANS CFD 计算比更简单的技术更适合用于对加油机、接收器、软管和锥套之间的气动相互作用进行建模。实时动态模型基于两个完整的飞机动态模型。一整套模拟程序(包括现代客机飞行控制系统的所有复杂性)用于每架飞机。耦合的模拟程序部署在 DLR AVES 模拟器中。为此,需要对 AVES 核心程序及其配置进行许多修改,以将其扩展为能够模拟两架飞机的编队:文中从功能的角度提到了其中一些修改,但没有过多地深入 AVES 特定的实施细节。