本文介绍了功率循环测试台的最新进展,该测试台旨在在低 Δ TJ(>10 9 次循环,10 至 20°C)下执行非常高的循环次数。该测试台基于桥式逆变器的操作,其中功率器件是要测试的模块,并在实际条件(切换)下对功率芯片进行功率循环,具有很高的灵活性。该设备可以执行功率循环常规测试(低频,0.01Hz 至 0.1Hz)以及使用由 PWM 调制调整的中频(10Hz 至 100Hz)负载电流引起的温度变化进行快速测试。简要介绍了测试台,并通过使用红外摄像机对 1200V-75A IGBT 模块进行的热测量说明了现在可用的功率循环模式。最后,介绍了低温波动(10°C 和 20°C)下的老化测试结果。
通过功率循环测试对使用改进的互连技术的最新标准双功率模块进行老化调查 Yi Zhang a,* 、Rui Wu b 、F. Iannuzzo a 、Huai Wang aa AAU Energy,奥尔堡大学,丹麦奥尔堡 b Vestas Wind Systems A/S,丹麦奥胡斯 摘要 为硅和碳化硅设备开发了最新标准“新型双”功率模块,以满足高可靠性和高温电力电子应用日益增长的需求。由于新封装刚刚开始投放市场,其可靠性性能尚未得到充分研究。本文研究了基于新封装的 1.7 kV/1.8 kA IGBT 功率模块的功率循环能力。对功率循环前后的电气和热性能都进行了研究。在 Δ T j = 100 K 和 T jmax = 150 ° C 的条件下经过 120 万次循环后,芯片和键合线均没有明显的性能下降。尽管如此,在测试环境中,在约 600 k 次循环后,已达到导通电压 (V ce ) 增加的寿命终止标准。进一步的扫描声学显微镜测试发现,疲劳位置从传统的近芯片互连(例如,键合线剥离)转移到直接键合铜 (DBC) 基板和底板层。考虑到新封装的循环寿命是传统功率模块的十倍以上,预计随着互连技术的进一步改进,热机械疲劳将不再是限制寿命的机制。同时,随着先前的瓶颈(例如,键合线)得到解决,一些新的疲劳机制(例如,DBC 的分层)在新封装中变得明显。
摘要 电池寿命估算对于有效的电池管理系统至关重要,可帮助用户和制造商进行战略规划。然而,准确估算电池容量非常复杂,因为容量衰减现象多种多样,与温度、充放电速率和休息时间长度等因素有关。在这项工作中,我们提出了一种创新方法,将现实世界的驾驶行为融入循环测试中。与缺乏休息时间并涉及固定充放电速率的传统方法不同,我们的方法涉及 1000 个针对特定目标和应用量身定制的独特测试循环,捕捉温度、充放电速率和休息时间对容量衰减的细微影响。这可以全面了解电池级电池的退化,揭示受循环测试参数影响的固体电解质界面 (SEI) 层和锂镀层的生长模式。结果产生了用于评估特定测试条件下容量衰减的关键经验关系。
摘要:在实现精确电池的过程中,测量结果的生成和基于这些结果的发现起着重要作用。虽然循环寿命测试耗时且昂贵,但它们可以提供支持和重要信息。特别是在当前加速充电过程的主题中,了解不同的充电电流如何影响不同类型的电池非常重要。CC CV 充电方法仍然是最常见、最广泛使用的方法。因此,本文进行了长期循环测试,以阐明电池制造商推荐的不同充电电流的影响。研究和比较了常见的高能量和高功率圆柱形锂离子电池。除了充电协议对老化、充电时间和发热的影响外,还考虑了对电池分散的影响以及对充电过程的恒定电流和恒定电压部分的影响。从结果可以看出,被研究的电池在响应增加的充电电流时的行为有多么不同。即使是看似相似的电池,老化行为也会有显著差异。
最新标准“ New Dual ”功率模块已为硅和碳化硅器件开发,以满足高可靠性和高温电力电子应用日益增长的需求。由于新封装刚刚开始投放市场,其可靠性性能尚未得到充分研究。本文研究了基于新封装的 1.7 kV/1.8 kA IGBT 功率模块的功率循环能力。研究了功率循环前后的电气和热性能。在 Δ T j = 100 K 和 T jmax = 150 ◦ C 的 120 万次循环之后,芯片和键合线均无明显性能下降。尽管如此,在测试环境中传导电压 (V ce ) 增加的寿命终止标准在约 600 k 次循环时已达到。进一步的扫描声学显微镜测试发现,疲劳位置从传统的近芯片互连(例如,键合线剥离)转移到直接键合铜 (DBC) 基板和底板层。考虑到新封装的循环寿命是传统功率模块的十倍以上,随着互连技术的进一步改进,预计热机械疲劳将不再是寿命限制机制。同时,随着先前的瓶颈(例如键合线)得到解决,一些新的疲劳机制(例如 DBC 的分层)在新封装中变得明显。
[5] R. Schmidt 和 U. Scheuermann,“使用芯片作为温度传感器 - 陡峭横向温度梯度对 Vce(T) 测量的影响”,2009 年第 13 届欧洲电力电子及应用会议,巴塞罗那,2009 年,第 1-9 页。