金属在受到重复的循环载荷时会出现疲劳损坏。每个循环中的应力大小不足以在单个循环中导致失效。因此,需要大量的循环才能导致疲劳失效。重要的是,疲劳裂纹在远低于金属单调抗拉强度的应力水平下成核和生长。裂纹以非常小的量连续前进,其增长率由载荷大小和部件的几何形状决定。人们对钢的疲劳进行了大量研究。在此背景下,首先简要描述了碳钢和低合金钢中的主要微观结构以及这些微观结构的相变。随后,描述了疲劳机制的一些基本方面的知识,特别强调了疲劳寿命预测方法的发展。
许多循环载荷结构在经过一定次数的循环后就会出现损坏,即使一个循环中的最大应力远低于静态强度。这种现象称为疲劳。这是一个关键标准,在对工程结构进行适当尺寸设计时必须考虑,因为工程结构在许多情况下会受到重复载荷。特别是在层压复合材料领域,由于其复杂的损伤机制,疲劳仍然是广泛研究的内容。本研究重点研究层压复合材料疲劳领域有限元分析 (FEA) 软件包的现状。由于可能应用于复合材料轮辋(其中会出现疲劳脱层问题),因此评估的重点在于层间疲劳损伤。
天然/合成混合增强聚合物复合材料具有显著的特性,而且大多数由这些材料制成的部件都会受到循环载荷,因此在结构应用中,其应用的市场份额正在迅速增长。它们的疲劳性能受到了广泛关注,因为由于纤维之间的协同作用,预测它们的行为是一项挑战。这项研究的目的是表征六层凯夫拉纤维与一层编织洋麻增强环氧树脂混合而成的拉伸、压缩和拉伸-压缩疲劳行为,重量分数为 35%。进行了疲劳试验,并以 60%、70%、80% 和 90% 的极限压缩应力进行循环加载。结果完整描述了拉伸和压缩性能,可用于预测疲劳引起的失效机制。
摘要。铁路轴是火车车轮及其车身之间的重要连接。但是,循环载荷和高速可以引起铁路轴的疲劳,这可能导致损害人体安全。因此,重要的是要找到具有最低重量和成本的良好机械性能的材料。在本文中,已经执行了一种使用Ashby图表的综合方法,以选择铁路轴的候选材料。这些方法从确定问题,目标函数和约束来开始分析功能开始。之后,使用PAHL和Beitz定量加权方法对所获得的结果进行排名。结果表明,铁路轴的最佳五个候选材料分别是TI-6AL-4V,AISI 4130,EA16碳钢,Bismaleimide Matrix CFRP和7000 AL。
神经网络使我们能够模拟 QSTE340TM 钢的疲劳寿命,并有效预测材料在循环载荷下的裂纹扩展。我们根据 [7] 中获得的实验数据建立了函数依赖关系模型。数据集 [8] 包含裂纹长度 a 与载荷循环数 N 的依赖关系,其中四个应力比 R 分别为 R = 0.1、0.3、0.5 和 0.7,在恒定振幅 (CA) 下,以及在单次拉伸过载后,过载比 Rol = 1.5、2.0。神经网络在一个数据集上训练,其中输入参数为载荷循环数 N 、应力比 R 和过载比 Rol ,输出参数为裂纹长度 a 。载荷循环 N 反映了钢的载荷循环数,是评估疲劳裂纹扩展的主要参数之一。应力比 R 决定了循环中最小载荷和最大载荷的比率,这也会影响疲劳裂纹发展的速度。过载率 Rol 考虑负载超过标称值的情况。
玻璃或碳纤维增强环氧复合材料。这些占涡轮机成本的很大一部分,但很少有数据可用于验证当前的安全系数或提出替代的更环保的材料。这项在欧盟 H2020 RealTide 项目内进行的研究旨在提供这些数据。首先,在试样规模上对静态和疲劳行为进行了详细调查,不仅包括当前使用的材料,还包括替代的可回收热塑性基质复合材料和天然纤维增强材料。在海水饱和之前和之后进行测试,以量化吸水后设计性能的变化。然后设计了第一个全尺寸 5 米长的复合材料叶片并进行了失效测试。建造了一个特定的测试框架,允许施加高达 75 吨的负载并模拟与服务负载相对应的施加力矩。施加了静态和循环载荷,并且广泛
在线性和非线性工程材料中 [ 1 , 2 ]。例如,在复合材料中,弥散损伤之后是损伤局部化和裂纹形成,最终导致断裂。在准脆性材料或受到循环载荷的金属中,裂纹形成和扩展在损伤开始后迅速发生。初始或诱导各向异性在材料损伤中普遍存在,对建模和模拟提出了挑战,正如许多现有的各向异性损伤复杂公式所示 [ 3 ]。相比之下,文献中很少发现连续损伤方法对金属单晶的应用,这可能是由于特定的各向异性变形和损伤机制。[ 4 ] 解决了单晶镍基高温合金的蠕变损伤,而 [ 5 ] 中的作者提出了一个与晶体粘塑性耦合的各向异性损伤模型框架。[ 6 ] 使用粘结区模型模拟单晶裂纹沿预定义路径扩展
2.2.5.e 对于应力集中区域的元件,即开口的拐角、主要支撑结构构件的肘板的趾部和跟部,在计算航海载荷工况(S + D 设计组合)的屈服利用系数时,材料的屈服应力不应大于 315 N/mm 2。当使用高强度钢不能提高高循环载荷下结构细节的疲劳强度时,这可用作控制高循环疲劳损伤的隐性方法。在许多情况下,由于结构中允许的应力较高,使用高强度钢建造的结构细节的疲劳损伤实际上比使用低碳钢建造的结构细节更严重。这种对高强度钢屈服强度利用的限制不适用于港口/油罐试验载荷工况(S 设计组合)。这些载荷工况所代表的相关失效模式是低周疲劳(重复屈服),可能由于加载/卸载顺序而发生。对于低周疲劳,疲劳强度随屈服强度的增加而增加,并且与材料的屈服强度成正比。另请参阅 2.3.5.h。
我们研究了用于航空航天应用的不同纤维取向的单向增强碳-碳复合材料的疲劳开裂行为。通过数字图像相关 (DIC),现场记录全场位移,捕捉循环载荷过程中应变局部化的演变。DIC 位移场进一步用于通过正交各向异性本构关系的回归分析确定裂纹驱动力。显微计算机断层扫描 (micro-CT) 扫描揭示了损伤微观机制的竞争性质,例如孔隙聚结、纤维桥接等,用于推进裂纹。断裂表面的电子显微镜检查揭示了广泛的纤维/基质界面脱粘和纤维拔出,这主要是对抗循环开裂的影响。在足够的进展后,除非施加的载荷进一步增加,否则循环裂纹扩展本质上是自停止的。这种行为的起源归因于:(a)由于复合材料弹性模量不断下降导致驱动力降低;(b)由于尾流中普遍的纤维桥接和拉出导致的阻力牵引导致损伤阻抗增强。