微型机器人,微型机器人设备通常从微米到尺寸的几毫米,在各个领域,尤其是医疗保健中具有巨大潜力。他们的小规模能够访问先前无法达到的复杂解剖区域,促进靶向药物输送,局部治疗和精确的监测。这些机器人具有许多优势,包括提高可操作性,侵入性降低和最小化组织损伤。通过在复杂的生物学环境中导航,微型机器人可以以前所未有的精度提供疗法,从而改善治疗效果和患者的结果。此外,它们的小尺寸允许最小的侵入性手术,减少恢复时间并增强患者舒适感。总的来说,微型机器人代表着开创性的技术进步,有可能彻底改变医疗保健服务并显着使人类福祉受益。它们的小尺寸可访问用于靶向药物,局部治疗和精确监测的复杂解剖区域。尽管大小限制和导航复杂性等挑战,但创新的解决方案和跨学科的合作仍在推动他们在改善医疗保健成果方面的进步。
谷物宽度和重量2(GW2)是一种E3-泛素连接酶编码基因,对谷物物种中谷物的大小和重量负调节。因此,建议禁用GW2基因活性以提高作物生产率。我们在这里表明,大麦GW2.1同源物的CRISPR/CAS介导的诱变会导致细长谷物的发展和蛋白质含量增加。同时,GW2.1功能的损失引起了由于尖峰数量减少和谷物设置低而引起的明显晶粒屈服不足。我们还表明,GW2.1缺乏作物产量和蛋白质含量引起的相反作用在很大程度上与培养条件无关。这些发现表明大麦GW2.1基因对于产量和晶粒性状之间的优化是必需的。总的来说,我们的数据表明,大麦中GW2.1基因活性的丧失与多效性效应相关,对生成器官的发展以及因此谷物产生产生了负面影响。我们的发现有助于更好地理解谷物的发育以及GW2.1控制大麦的定量和定性遗传改善中控制的UTI。
磁性微型机器人有望在最低侵入性细胞的治疗中受益。但是,它们通常会遭受其磁反应能力和生物医学功能之间必然的折衷。在此,我们报告了一个模块化的微型机器人,该微型机器人由磁性致动(MA)和细胞支架(CS)模块组成。具有强磁性和pH响应性变形的MA模块以及具有细胞加载功能的CS模块是通过三维打印技术制造的。随后,通过设计轴孔结构并自定义其相对尺寸来执行模块的组装,从而在复杂的环境中启用了磁导航,同时又不降低细胞功能。在目标病变处的按需拆卸,以促进CS模块的输送和MA模块的检索。此外,在体内兔胆管中验证了拟议系统的可行性。因此,这项工作提出了一种基于模块化设计的策略,该策略能够毫不妥协地制造手动型微型机器人,并刺激其发育以用于将来的基于细胞的治疗。
完整作者列表:Shah, Zameer Hussain;特拉华大学,机械工程系 Sokolich, Max;特拉华大学,机械工程系 Mallick, Sudipta;特拉华大学,机械工程系 Rivas, David;特拉华大学,机械工程系 Das, Sambeeta;特拉华大学,机械工程系
1. 简介 IEEE COINS 的 Tiny ML 竞赛是一项具有挑战性的、持续数月的研究和开发竞赛,专注于人工智能、嵌入式系统和物联网领域的高级现实问题。它向全球的多人团队开放。今年的比赛重点是人类活动识别。人类活动识别是一种常见的机器学习任务,广泛应用于多个领域。这项技术使用来自各种传感器的数据来帮助监测健康状况、识别异常的人类活动以进行监视、跟踪健身锻炼等等。当然,实现复杂的人类活动识别存在各种挑战。为了在可穿戴设备等低功耗设备上达到所需的精度,嵌入式工程师必须找到在内存和处理能力有限的平台上运行机器学习模型的方法。因此,专家需要设计具有适合内存受限设备上拟议的机器学习任务的大小-精度比的神经网络。
此类移动医疗微型机器人的开发和实施,包括软机器人微设备的制造[11,12]、生物相容性或响应性 (自适应) 材料的合成[13–15] 以及体内运动策略。[16–22] 已提出了大量远程控制医疗微型机器人,以实现形状改变、多功能化和重构,以响应不同的刺激,如磁场[23–27]、温度[28,29]、化学物质[30,31]、光[32] 和超声波[33,34],用于各种医疗应用,如靶向药物输送、微创手术和遥感。[35,36] 然而,微型机器人与生物组织的相互作用、复杂的生物流体环境以及多种刺激的重叠是其未来医疗应用面临的主要挑战。[37]
目的立体定向引导系统始终保持高精度且使用简单,对于精确的立体定向定位和缩短手术时间至关重要。尽管机器人引导系统被广泛应用,但目前可用的系统还不能完全满足结合无框架手术和机器人技术优势的立体定向引导系统的要求。作者开发并优化了一种小型但高精度的引导系统,该系统的设计使其可以无缝集成到现有的手术室 (OR) 设置中。本临床研究旨在概述这种微型机器人引导系统的开发并介绍作者的临床经验。方法在对机器人立体定向引导系统进行广泛的临床前测试后,对机器人固定、软件可用性、导航集成和末端执行器应用进行了调整。随后,在 2013 年至 2019 年期间的 150 名患者的临床系列中推进了机器人系统的开发,包括 111 次针吸活检、13 次导管置入和 26 次立体脑电图 (SEEG) 电极置入。在临床试验期间,不断进行修改以满足每种适应症的设置要求、技术规格和工作流程。对于每种应用,都会评估特定的设置、工作流程和平均手术准确度。结果在 150 例病例中,149 例可应用微型机器人系统。每个手术中的设置都成功实施,而不会增加大量的手术时间。工作流程无缝集成到现有手术中。在研究过程中,手术准确性得到了提高。对于活检手术,真实目标误差 (RTE) 从平均 1.8 ± 1.03 毫米减少至入口处的 1.6 ± 0.82 毫米 (p = 0.05),从 1.7 ± 1.12 毫米减少至目标处的 1.6 ± 0.72 毫米 (p = 0.04)。对于 SEEG 手术,RTE 从手术前半部分的平均 1.43 ± 0.78 毫米减少至后半部分入口处的 1.12 ± 0.52 毫米 (p = 0.002),从 1.82 ± 1.13 毫米减少至目标处的 1.57 ± 0.98 毫米 (p = 0.069)。所有病例均未观察到愈合并发症或感染。结论 微型机器人引导装置已成功应用于 149 例立体定向手术,证明了其多功能性和无缝集成到现有工作流程的能力。根据这些数据,机器人可以显著提高准确性,而无需增加时间支出。
然而,在液体积聚会对下面的生物膜和上皮细胞造成运输障碍的疾病中,雾化治疗的效率和效果会显著降低。[10,11] 常见的例子包括肺炎、囊性纤维化、急性支气管炎和慢性阻塞性肺病。由于 μ 机器人具有增强体内运输的潜力,因此可以用来克服液体积聚并增强治疗效果。μ 机器人通常使用微电子行业的技术制造而成 [12],可以由各种场提供动力和引导,包括磁场、[13] 声场、[14] 化学场,[15] 甚至光场。[16] 对于体内应用,μ 机器人最常见的控制方法是通过不会在组织中衰减的磁场 [17],并且已经证明了定向平移
摘要 - 光检测和范围(LIDAR)已被广泛用于空中监视和自动驾驶。如果配备LIDAR,机器人技术甚至微型机器人的能力都可以大大增强,但是必须使用非常轻巧和小的LIDAR。微型机器人的尺寸接近鸟类或昆虫,几乎所有现有的激光雷达都太重了,对它们来说太大了。在这项工作中,提出并证明了其光学扫描仪的新型MEMS LIDAR,其光学扫描仪已被提出并证明。扫描仪头将通过移动的微型机器人携带,而雷达底座则固定在地面上。有一条薄而柔性的光学/电缆,将扫描仪头连接到底座。扫描仪头由一个MEMS镜子和一个棒镜组成,它的重量仅为10 g,长4厘米。mems镜的光圈为1.2 mm×1.4 mm,可以扫描9°×8°的视场(FOV)。由于微型机器人和光学扫描仪头部相对于光学接收器的移动,IMU(惯性测量单元)已嵌入扫描仪头中以跟踪运动,并且已经开发出算法以重建真实点云。可移动的底圈可以每秒获取400点,并检测到最多35厘米的目标。微型机器人在移动时可以携带扫描仪的头部,并且可以在LiDAR底座生成点云。这种新的LIDAR配置可实现微型机器人的范围,映射,跟踪和缩放扫描。
摘要。费米子模式的算子代数与量子位的构成同构,它们之间的差异是双重的:一方面与模式子集和多Quembit子系统相对应的子代理的嵌入,另一只手的偶然性子系统,另一方面是奇偶校的超选择。我们从量子信息理论的角度从连贯的,独立的,教学的方式进行了连贯的,独立的,教学的方式来广泛讨论这两个基本差异,并通过约旦 - 温和派代表来说明这些差异。我们的观点使我们开发了有用的新工具来治疗费米子系统,例如费米(Quasi)张量产品,费米子的典范嵌入,费米子部分痕迹,地图的效率和图像嵌入图。我们通过直接,易于适用的for-mulas(无模式排列)来制定这些模式的分区。还表明,费米子还原状态可以通过含有适当的相因子的费米子部分迹线来计算。,如果施加了平等超选择规则,我们还考虑了费米子模式相关性和纠缠概念的变体,可以赋予通常的基于本地操作的动机。我们还阐明了与关节图扩展有关的其他一些基本要点,这使得在费米米奇系统的描述中不可避免地取代了平等。