有机染料和颜料是被排入水源的污染物的常见例子。随后,化学家搜索了新颖和有效的吸附剂,以从着色化合物中处理污水。偶联的微孔聚合物(CMP),在其他独特的优点旁边显示出高毛埃米特和柜员(BET)表面积和多孔形态,通过将染料分子摄入其大型且永久的毛孔,并在光线下消除它们,从而解决了这种挑战的情况。在本文中,我们采用了新的硫烷基链接的CMP的设计合成,其中含有bicarbazole,bi-fureenylidene和二苯甲基乙烯构建块,即:BC-TT,BF-TT和BIPE-TT CMP。对AS合成的CMP进行了所有常见的特征,包括化学,物理和光物理。除了其显着的表面区域达到522 m 2 /g和最大孔隙量(最大0.50 cm 3 /g)之外,它们还具有良好的热稳定性,具有最高值(降解温度¼460c; char tart fars yart yart yart yart yart yart hart yart hart hart hart hart¼67wt%)。更重要的是,已证明产生的聚合物具有吸附能力,并且具有若丹明B(RHB)和亚甲基蓝色(MB)染料的光催化降解。bc-tt CMP表现出最高的吸附效率,其容量为228.83 mg/g,以及MB染料摄取的最大性能(高达232.02 mg/g)。©2023 Elsevier Ltd.保留所有权利。使用这些CMP测量染料的光催化降解后,BC-TT-CMP也完全显示出催化效率的最高值,即用于RHB(速率常数:2.5 10 2 min 1)或MB染料(速率常数)(速率常数:3.5 10 2 min 1)。
摘要:已经提出了片上微区谐振器(MRR)来构建时间延迟的储层计算(RC),该计算提供了有希望的配置,可用于具有高扩展性,高密度计算和易于制造的计算。但是,单个MRR不足以为具有多种内存要求的计算任务提供足够的内存。MRR通过光学反馈波导满足了巨大的记忆需求,但以其较大的足迹为代价。在结构中,超长的光学反馈波导实质上限制了可扩展的光子RC集成设计。在本文中,提出了一个时间删除的RC,该RC是通过利用基于硅的非线性MRR与一系列线性MRRS结合使用的。这些线性MRR具有高质量的因素,为整个系统提供了足够的存储能力。我们在具有多种内存要求的三个经典任务上进行定量分析和评估拟议的RC结构的性能,即Narma 10,Mackey-Glass和Santa Fe Chaiotial Chaotion Chaoticerseries的预测任务。在处理NARMA 10任务时,提出的系统具有超长的基于波导的系统,具有与MRR相当的性能,这需要大量的内存能力。尽管如此,与具有基于光反馈波导的系统的MRR中超长的反馈波导相比,这些线性MRR的总长度明显小于三个数量级。这种结构的紧凑性对光子RC的可伸缩性和无缝整合具有重要意义。
。cc-by-nc 4.0国际许可证未获得同行评审的认证)是作者/筹款人,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
摘要。利用飞秒光纤激光器在环境空气中实现了微孔钻孔和切割。首先,研究了透明(玻璃)和不透明(金属和组织)材料中的微孔钻孔。利用光学和扫描电子显微镜对孔的形状和形貌进行了表征和评估。演示了长宽比为 8 ∶ 1 的无碎片、圆度好且无热损伤的微孔。还演示了在硬组织和软组织中无裂纹或附带热损伤的微孔钻孔。然后,研究了不同材料的沟槽微加工和切割,并研究了激光参数对沟槽性能的影响。获得了笔直、干净的沟槽边缘,没有热损伤。© 作者。由 SPIE 根据知识共享署名 3.0 未移植许可证发布。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。 [DOI:10.1117/1.OE .53.5.051513]
摘要。利用飞秒光纤激光器在空气中钻孔和切割微孔。首先,研究了透明(玻璃)和不透明(金属和组织)材料中的微孔钻孔。用光学和扫描电子显微镜对孔的形状和形貌进行了表征和评估。演示了长宽比为 8 ∶ 1 的无碎片、圆度好、无热损伤的微孔。还演示了在硬组织和软组织中钻孔微孔,没有裂纹或附带热损伤。然后,研究了不同材料的沟槽微加工和切割,并研究了激光参数对沟槽性能的影响。获得了笔直、干净的沟槽边缘,没有热损伤。© 作者。由 SPIE 根据知识共享署名 3.0 未移植许可证发布。分发或复制本作品的全部或部分需要完全署名原始出版物,包括其 DOI。 [DOI: 10.1117/1.OE .53.5.051513 ]
摘要。利用飞秒光纤激光器在空气中钻孔和切割微孔。首先,研究了透明(玻璃)和不透明(金属和组织)材料中的微孔钻孔。用光学和扫描电子显微镜对孔的形状和形貌进行了表征和评估。演示了长宽比为 8 ∶ 1 的无碎片、圆度好、无热损伤的微孔。还演示了在硬组织和软组织中钻孔微孔,没有裂纹或附带热损伤。然后,研究了不同材料的沟槽微加工和切割,并研究了激光参数对沟槽性能的影响。获得了笔直、干净的沟槽边缘,没有热损伤。© 作者。由 SPIE 根据知识共享署名 3.0 未移植许可证发布。分发或复制本作品的全部或部分需要完全署名原始出版物,包括其 DOI。 [DOI: 10.1117/1.OE .53.5.051513 ]
摘要。利用飞秒光纤激光器在空气中钻孔和切割微孔。首先,研究了透明(玻璃)和不透明(金属和组织)材料中的微孔钻孔。用光学和扫描电子显微镜对孔的形状和形貌进行了表征和评估。演示了长宽比为 8 ∶ 1 的无碎片、圆度好、无热损伤的微孔。还演示了在硬组织和软组织中钻孔微孔,没有裂纹或附带热损伤。然后,研究了不同材料的沟槽微加工和切割,并研究了激光参数对沟槽性能的影响。获得了笔直、干净的沟槽边缘,没有热损伤。© 作者。由 SPIE 根据知识共享署名 3.0 未移植许可证发布。分发或复制本作品的全部或部分需要完全署名原始出版物,包括其 DOI。 [DOI: 10.1117/1.OE .53.5.051513 ]
摘要。利用飞秒光纤激光器在空气中钻孔和切割微孔。首先,研究了透明(玻璃)和不透明(金属和组织)材料中的微孔钻孔。用光学和扫描电子显微镜对孔的形状和形貌进行了表征和评估。演示了长宽比为 8 ∶ 1 的无碎片、圆度好、无热损伤的微孔。还演示了在硬组织和软组织中钻孔微孔,没有裂纹或附带热损伤。然后,研究了不同材料的沟槽微加工和切割,并研究了激光参数对沟槽性能的影响。获得了笔直、干净的沟槽边缘,没有热损伤。© 作者。由 SPIE 根据知识共享署名 3.0 未移植许可证发布。分发或复制本作品的全部或部分需要完全署名原始出版物,包括其 DOI。 [DOI: 10.1117/1.OE .53.5.051513 ]
摘要:锂离子电池(LIB)性能可能会受到复杂电极微结构的性质的显着影响。几乎所有LIB电极中存在的碳粘合剂结构域(CBD)用于增强机械稳定性和促进电子传导,并了解CBD相微结构以及它如何影响复杂耦合的传输过程对LIB性能优化至关重要。在这项工作中,首次详细研究了CBD阶段中微孔度的影响,从而深入了解CBD微结构与电池性能之间的关系。为了研究CBD孔径分布的效果,使用随机场方法在硅中生成多相电极结构,包括实践中看到的双峰孔径分布和具有可调孔尺寸和可变传输特性的微孔CBD。大孔的分布和微孔CBD相显着影响模拟的电池性能,其中电池的特定容量随着CBD相的微孔力的增加而提高。关键字:锂离子电池(LIB),碳粘合剂域(CBD),电极微观结构,随机方法,微型质量
抽象巨噬细胞在炎症过程的开始,维持和过渡中至关重要,例如异物反应和伤口愈合。安装证据表明,物理因素还会在体外和体内调节巨噬细胞的激活。2D体外系统表明,将巨噬细胞限制为小区域或通道可调节其表型,并改变其对已知炎症剂(如脂多糖)的反应。但是,探索尺寸和孔径如何影响巨噬细胞表型。在这项工作中,我们研究了巨噬细胞限制在微孔退火颗粒支架(MAP)中时M1/M2极化的变化,这些粒子是由退火球形微凝胶产生的颗粒状水凝胶。我们设计了三种类型的地图凝胶,分别包括40、70和130 µm直径的粒径。颗粒大小,该输出分析了MAP凝胶中3-D孔的特性。由于构建块粒子的尺寸与最终支架内部的孔径相关,因此我们的三种脚手架类型使我们能够研究空间限制程度如何调节嵌入式巨噬细胞的行为。在空间上限制了骨尺寸的巨噬细胞在细胞尺度上的巨噬细胞导致炎症反应水平降低,这与细胞形态和运动性的变化相关。引言巨噬细胞是许多伤害和疾病的核心1。这些状态可以简化为从促炎(M1)到促育(M2)表型2,3的频谱。这个因素在典型的炎症事件中,巨噬细胞是最早到达并偏振各种激活状态以执行特定功能的巨噬细胞之一。通常,M1表型与炎症的启动和维持有关,而M2表型与炎症的分辨率和再生阶段4密切相关。除了在表型中及时过渡的内在分化途径外,巨噬细胞还适应了来自相邻细胞的微环境线索和居住在5的细胞外基质。其他细胞(例如IFN-γ或IL-4)分泌的生化因子可以将巨噬细胞引导到促炎或育次育进行表型6。这些常见可溶性因子背后的分子机制及其对巨噬细胞的影响已得到广泛研究。但是,物理信号调节巨噬细胞激活的机制的探索较少。在生物材料领域,研究人员已经测试了广泛的材料特性对巨噬细胞调节的影响,以追求更好的生物相容性。例如,通过增加亲水性来修饰表面修饰可减少巨噬细胞的附着,而用细胞结合配体进行装饰表面偏向巨噬细胞极化10-13。了解控制表型巨噬细胞变化的特定机械传输机制将指导未来的生物材料设计并获得深远的生理意义。空间限制是在组织或材料支架中调节巨噬细胞反应的众所周知的参数。地形设计将巨噬细胞迫使伸长的细胞形状被证明可促进促增再效的M2表型14。通过使用微图案表面,微孔底物和细胞拥挤来诱导空间限制,研究人员能够防止小鼠骨髓来源的巨噬细胞或RAW264.7细胞扩散,从而抑制晚期的脂多糖(LPS)晚期(LPS)相关的转录程序和细胞质的表达15。肌动蛋白聚合在狭窄空间内的巨噬细胞中受到限制,这降低了依赖于肌动蛋白的转录副因素,肌动蛋白相关的转录因子-A 15。
