基板厚度 6.1 简介................ ............. 6-1 6.2 带宽定义。6.3 根据测量结果确定带宽 6.4 计算薄天线元件的阻抗带宽。6.5 计算厚天线元件的带宽.... 6.6 结果与讨论 6.7 结论
沿 Y 轴的孔宽度为 0.5 毫米,沿 x 轴的孔长度为 20 毫米。每个 I 形孔都蚀刻在传输线贴片平面下方。经过参数研究,计算出了设计的最佳尺寸。此外,传输线在几个馈电网络中通常不是直线,但在几个馈电网络中是直线。它们被认为在某种程度上折叠起来。当水平传输线折叠成 90 度垂直传输线时,输入的大部分功率会在不连续处反射回源,从而降低系统的性能,因为它会导致线路电容发生变化,从而影响线路的阻抗。天线设计中采用了斜接弯曲方法来减少传输线损耗。斜接弯曲的目的是去除少量电容,将线路的阻抗恢复到匹配阻抗。图 4 描绘了用于解决这些问题的微带斜接弯曲的结构。截断通道的尺寸(x)可以通过方形弯头的对角线D来计算。弯头的尺寸可以借助以下方程式[4-6]来计算。
1. 引言由于高速微处理器和快速切换技术的进步,超宽带 (UWB) 已成为经济可行的短距离、高性价比通信技术。雷达系统、无线个人局域网、定位、消费电子产品和医疗电子产品只是早期的一些应用。从那时起,人们已经对 UWB 电磁学、组件和系统工程有了完整的了解。美国联邦通信委员会 (FCC) 是 2002 年发布 UWB 指导意见的主要组织,授权在 3.1–10.6 GHz 范围内未经许可使用分配的频谱。尽管如此,允许的功率水平设置得非常低,以避免与在此频率范围内运行的其他技术(如 Wi-Fi 和蓝牙 [1])发生干扰。图 1 描绘了通常的无线电传输功率谱密度与
如今,微带天线在许多航空航天应用中都受到青睐,例如高性能车辆、飞机、军用飞机、无人驾驶飞行器 (UAV)、航天器、雷达系统、卫星和导弹应用。本研究调查了微带贴片天线在航空航天工业尤其是全球定位系统 (GPS) 中的应用,并在 GPS L5 安全频段实现了微带贴片天线的样本设计。利用高频结构模拟器 (HFSS) 模拟了设计的高增益圆极化天线,并分析了结果。模拟的数值分析表明,在中心频率 1176 MHz 处,S11 值为 - 38.85 dB,带宽为 54 MHz,增益为 6.07 dBm。根据这些值,得出结论,它可以在全球定位 L5 安全频段中使用。
在底部的铜接地处,厚度为0.035 mm。同轴电缆用于在一个在50Ω上提供更好匹配的阻抗的点来喂食天线。这种结构是用商业软件HFSS v19。模拟的简单微带天线的模拟结果,散射系数(S 11)而没有加载超材料的散射系数在9 GHz时为-36.33 dB。超材料基本上是人为设计的周期性结构,与常规材料相比,具有不同的电磁特性。me-Tamaterials具有负折射率,这在自然杂物中未发现,这是Veselago在1968年首次假设的[6] [6]。这些设计的周期结构在某些频率上引起共鸣,并能够以光的形式吸收电磁辐射。基于ε(介电常数)和μ(渗透率)值的负折射率的理论背景。以:
对于小型汽车雷达来说,微型的平面天线,任何雷达系统的头发和眼睛都知道自50年代以来的巨大进展。微带天线阵列被最大的汽车制造商用于雷达[5] - [7],因为重量轻,并且成本低成本制造以用于大量产量,但是它们的主要弱点是由于焦耳效应和狭窄的带宽而导致的能量损失,这限制了在MM-Wave和超越MM Wave和超越斑点天线的使用。然而,在1983年著名的Long实验[9]之后,发现了微带天线的艰苦竞争者和雷达系统的出色候选[8],这是介电谐振器天线(DRA),其中金属散热器被介电材料代替。传统上,介电谐振器成功用于MM波谐振器和微波炉,但没有人想到使用它们来辐射电磁波。
委员会 B 1 离散方法 ................................................................................................ 33 5 阵列天线 ................................................................................................ .43 6 反射器和馈源天线 ................................................................................ 55 15 有效的解决方案和设计方法 ...................................................................... 65 25 手性介质 ................................................................................................ 77 27 电磁学中的经典问题 ............................................................................. 89 30 微带天线的数值方法 ............................................................................. 1 01 39 单极子、偶极子和谐振器 ............................................................................. 113 47 时域有限差分 ............................................................................................. 125 63 新材料 ................................................................................................ 137 68 快速电磁场模拟的模型降阶 ............................................................................. 143 71 从真实数据构建图像 ................................................................................ 155 74 周期性结构的散射 ............................................................................................. 163 75 混合方法................................................................................ 173 85 微带线和电路 ................................................................................ 185 92 复杂介质中的传播、散射和辐射 ........................................................ 193 98 天线 ................................................................................................ 203 102 导波和漏波结构 ................................................................................ 213 103 瞬态天线的特性 ................................................................................ 219 112 矩量法 ............................................................................................. 225 119 散射中的数据表示和可视化 ................................................................ 239 121 导波结构分析 ................................................................................ 245 123 逆问题 ............................................................................................. 255 124 非常规计算方法 ................................................................................ 261 127 网格截断方法 ................................................................................ 267 129 微带天线 ............................................................................................. 279 139 色散介质中的瞬态传播和散射 ...................................... 289 141 二维和三维介电物体的散射 .............................................. 301
委员会 B 1 离散方法 ................................................................................................ 33 5 阵列天线 ................................................................................................ .43 6 反射器和馈电天线 ................................................................................ 55 15 解决方案和设计的有效方法 ...................................................................... 65 25 手性介质 ................................................................................................ 77 27 电磁学中的经典问题 ............................................................................. 89 30 微带天线的数值方法 ............................................................................. 101 39 单极子、偶极子和谐振器 ............................................................................. 113 47 时域有限差分 ............................................................................................. 125 63 新材料 ............................................................................................................. 137 68 快速电磁场模拟的模型降阶 ............................................................................. 143 71 从真实数据构建图像 ................................................................................ 155 7 4 周期性结构的散射 ............................................................................................. 163 75混合方法 ................................................................................................ 173 85 微带线和电路 ...................................................................................... 185 92 复杂介质中的传播、散射和辐射 ........................................................ 193 98 天线 ................................................................................................ 203 102 导波和漏波结构 ................................................................................ 213 103 瞬态天线的特性 ................................................................................ 219 112 矩量法 ............................................................................................. 225 119 散射中的数据表示和可视化 ................................................................ 239 121 导波结构分析 ................................................................................ 245 123 逆问题 ............................................................................................. 255 124 非常规计算方法 ................................................................................ 261 127 网格截断方法 ................................................................................ 267 129 微带天线........................................................................... 279 139 色散介质中的瞬态传播和散射 .......................................... 289 141 2D 和 3D 介电物体的散射 ........................................................ 301
{X波段弓形微带天线,由AMC反射器{0.5-1MT Helmholtz线圈固定,用于牙髓浆干细胞的增殖{3.5 GHz Ultra wide toul-Wide blow-Noise how-Noise放大器{使用CRLH crlh line {Crlh line 7 rann-rann-rann vith crlh andnna){6. -23db {x波段微波放大器的侧室水平{2-18GHz双拖喇叭天线{2.5 GHz 3DB 3DB分支机线定向微带耦合器
信号发生器是一种用途广泛的重要电子测试仪器,可用于蜂窝通信、雷达系统、微带天线和电子实验室等各个领域。本研究重点是模拟和设计工作频率范围为 35 MHz 至 3 GHz 的低相位噪声信号发生器。为此,使用 Arduino 板上的 Atmega 328P 微控制器来控制基于锁相环 (PLL) 概念的合成器。评估了信号发生器的性能,特别强调预测和分析 PLL 组件产生的相位噪声。为确保系统稳健,设计了三阶环路滤波器以有效抑制杂散。通过使用 ADIsimPLL 仿真工具进行仿真,获得了环路带宽 (10 kHz) 和相位裕度 (45°) 的最佳值。为此实现所选的锁相环芯片是 ADI 公司生产的 ADF4351。通过进行瞬态分析,确定了 PLL 系统从最小输出频率过渡到最大输出频率所需的时间。此外,使用阴极射线示波器研究了 35-100 MHz 频率范围内的发生器信号特性,并使用频谱分析仪研究了 101-3000 MHz 频率范围内的发生器信号特性。计算了不同频率(35 MHz、387 MHz、1 GHz、2 GHz 和 2.9 GHz)下的相位噪声水平,并在不同的偏移量(1 kHz、10 kHz、100 kHz 和 1 MHz)下进行了分析。相比之下,实验结果表明相位噪声水平高于通过模拟获得的结果。值得注意的是,随着输出频率的增加,相位噪声也相应增加。