二维材料具有独特的光电特性,是可调、高性能光电器件的有希望的候选材料,而这些光电器件对于光学检测和量子通信至关重要。[1–3] 为了实现二维纳米片的可扩展生产,液相剥离 (LPE) 已被广泛探索,但与微机械剥离相比,其电子性能往往会受到影响。[4–6] 在 LPE 中,块状晶体被剥离成几层纳米片,通常使用超声波能量在适当的溶剂和/或稳定剂存在下,然后通过离心选择尺寸。[7] 虽然单个 LPE 纳米片可能表现出很高的光电质量,但基于渗透纳米片薄膜的器件通常会存在纳米片之间较大的接触电阻。 [7–9] 降低片间电阻的一种策略是优化 LPE 工艺,以获得具有较大横向尺寸的高纵横比纳米片,从而减少片间连接的数量和
摘要 — 如果不是因为其有限的 e 31,f 压电系数,氮化铝 (AlN) 为压电微机械超声换能器 (pMUT) 提供了一种与 CMOS 兼容、稳定且无铅的解决方案。尽管已知增加 ScAlN 中的钪 (Sc) 掺杂含量可以提高机电耦合因子 (K t 2 ) 和整体声学性能,但结果在很大程度上取决于 ScAlN 薄膜的应力,尤其是对于空气耦合 pMUT。本研究旨在比较由于 Sc 含量从 20% 增加到 30% 而导致的 pMUT 性能(以 K t 2 为单位)与应力的关系,并考虑其对频率和膜静态变形的影响。结果表明,30% Sc 器件在 -50 MPa 时实现了平均 K t 2 >6%,与基于 PZT 的 pMUT 相当。与 20% Sc 相比,30% Sc 掺杂的 pMUT 传输压力灵敏度提高了 50%,双向灵敏度总体提高了 6 dB。
INS 是一种用于许多现代车辆的设备。在 20 世纪 60 年代的弹道火箭计划中,这种改进的速度加快了,对高精度自主导航系统的需求也随之增加 [2]。如果故意在 INS 中干扰卫星和无线电通信系统,则控制单元将受到 INS 的监视,并且控制将由内部程序控制,这样敌人就无法阻止其运行。INS 是由微机械惯性传感器开发的,在过去 20 年中,这种传感器在没有外部影响的情况下迅速发展,如今它已成为飞行器、船舶、导弹专家的重要组成部分,是民用和军用导航系统的标准组成部分。据透露,尤其是近年来,自主系统正在开发中,并通过将以这种形式开发的系统应用于不同的车辆取得了很高的成果。这归功于港口货物汽车运输的发展、无人驾驶潜艇在各种用途上的成功应用,以及城际和城内无人驾驶运输车辆或拆弹机器人的发展[3]。
生物传感器是一种分析装置,它包含一个生物识别元件来捕获分析物,以及一个传感器来将识别相互作用转换为可测量信号。生物识别元件可以是核酸(DNA 和 RNA)、适体、肽、酶、抗体和微生物。生物识别元件的生化特性使生物传感器对检测分析物具有高度灵敏度和高度选择性,并且在测试样品中存在其他生物活性分子或物种的情况下干扰最小。传感器将生物识别事件转换为可测量信号,该信号可以是电化学信号(安培法、电位法和阻抗法)、光学信号(例如等离子体、发光和比色法)、压电信号、微机械信号等。生物传感器具有许多吸引人的优势,包括高灵敏度和特异性、响应迅速、尺寸相对紧凑、用户友好且经济高效,可进行时间分析。因此,生物传感器在许多应用领域都有着非常光明的未来,包括疾病的早期诊断和健康监测。
摘要 —我们首次介绍了一种高密度、聚合物基穿透微电极阵列的设计、制造和初步的台式表征,该阵列专为在行为大鼠的皮层和海马中进行长期、大规模记录而开发。我们针对这些目标大脑区域提出了两种架构,均采用 512 个 Pt 记录电极,这些电极在微机械加工的八柄薄膜聚对二甲苯 C 阵列上前后图案化。与之前基于聚合物的微电极阵列的研究相比,这些设备在记录电极的数量和密度方面都有了数量级的提高。我们介绍了与光刻分辨率相关的聚合物微加工方面的进展以及一种用于电极背面图案化的新方法。体外电化学数据验证了合适的电极功能和表面特性。最后,我们描述了在自由移动的动物模型中实施这些阵列进行长期、大规模记录研究的后续步骤。[2020-0109]
摘要:髋关节同种异体成形术通过在茎上引入杯子和头部来完全改变正确的生物摩擦对的合作条件。选择内op虫时,应在刚性摩擦学节点和吸收运动载荷的柔性生物观点之间进行选择,从而更好地近似于正常关节中的条件。该研究的目的是比较和评估用于髋关节内主体杯选定的生物材料的摩擦学和微机械参数。进行了耐磨性和测定摩擦系数的测试,以及微硬度和杨氏模量测试,使我们能够确定哪种材料是髋关节关节内植体杯的首选。基于执行的摩擦学测试的结果,作者在磨损和摩擦系数的背景下确定了最有利的摩擦学对。改善所使用的轴承对的摩擦学合作,特别是减少摩擦产物的磨损和产生,可能会影响内膜发生的表达条件以及其体内生存的长度。
现实世界的传感处理应用需要紧凑、低延迟和低功耗的计算系统。混合忆阻器-互补金属氧化物半导体神经形态架构凭借其内存事件驱动计算能力,为此类任务提供了理想的硬件基础。为了展示此类系统的全部潜力,我们提出并通过实验演示了一种用于现实世界对象定位应用的端到端传感处理解决方案。从仓鸮的神经解剖学中汲取灵感,我们开发了一种生物启发的事件驱动对象定位系统,将最先进的压电微机械超声换能器传感器与基于神经形态电阻式存储器的计算图结合在一起。我们展示了由基于电阻式存储器的巧合检测器、延迟线电路和全定制超声传感器组成的制造系统的测量结果。我们使用这些实验结果来校准我们的系统级模拟。然后使用这些模拟来估计对象定位模型的角度分辨率和能量效率。结果揭示了我们的方法的潜力,经评估,其能量效率比执行相同任务的微控制器高出几个数量级。
具有高光谱纯度的激光器可以实现多种应用空间,包括精密光谱、相干高速通信、物理传感和量子系统操控。目前,精心设计和构建的台式法布里-珀罗腔已经在主动激光线宽减小方面取得了显著成就,主要用于光学原子钟。然而,对在周围环境中高性能运行的小型化激光系统的需求日益增加。这里介绍了一种紧凑而坚固的光子原子激光器,它由一个 2.5 厘米长、20 000 精细度、单片法布里-珀罗腔和一个微机械铷蒸汽室集成而成。通过利用腔的短时频率稳定性和原子的长期频率稳定性,实现了能够集成以进行扩展测量的超窄线宽激光器。具体来说,该激光器支持 20 毫秒平均时间内 1 × 10 − 13 的分数频率稳定性,7 × 10 − 13
摘要:微机电系统 (MEMS) 为适用于结构健康监测 (SHM) 应用的传感器微型化提供了新技术。在本研究中,基于 MEMS 的传感器,特别是压电微机械超声波换能器 (PMUT),用于评估和监测螺栓连接结构系统的预紧力。为了使螺栓连接正常工作,必须保持适当的预紧力水平。在本研究中,连接到螺栓头部和末端的 PMUT 阵列分别用作一发一收超声波检测 (UT) 场景中的发射器和接收器。主要目标是检测由 PMUT 阵列产生的声波的飞行时间变化 (CTOF),该声波沿螺栓轴在无负载螺栓和使用中的螺栓之间传播。为了模拟螺栓接头的预紧力以及声波通过螺栓传输到一组 PMUT 和从一组 PMUT 传输的声波,我们创建了一组数值模型。我们发现 CTOF 与预紧力的大小呈线性关系。通过与初步实验结果进行比较,验证了数值模型的有效性。
摘要 — 本研究介绍了一种有前途的微加工技术,该技术采用无硅 (SON) 工艺在深度为 1 μ m 的真空腔上形成厚度为 2 μ m 的连续单晶硅膜。利用 SON 工艺,已在 8 英寸硅晶片上展示了高填充因子压电微机械超声换能器 (pMUT) 阵列,腔体宽度范围从 170 μ m 到 38 μ m。器件采用 15% 钪掺杂氮化铝作为 pMUT 的压电层,适用于空气耦合和水耦合应用。空气耦合 pMUT 的峰值位移频率为 0.8 至 1.6 MHz,Q 因子在 120 至 194 之间。水耦合 pMUT 阵列显示,在距离 20 毫米的 DI 水中,针式水听器测量的传输压力范围为 0.4 至 6.9 kPa/V,峰值频率在 5 至 13.4 MHz 之间,分数带宽为 56% 至 36%。本文提出的压电 SON 工艺有可能在低成本、高产量 pMUT 制造中获得关注。