除了 GaAs 功率放大器技术外,氮化镓 (GaN) 微波功率放大器技术也在探索中,以满足未来 BMD 雷达的性能要求。这项工作将展示一种使用气相外延生长的 GaN 衬底作为宽带隙材料的微波功率放大器。高性能 X 波段功率放大器将为未来的雷达和导弹导引头提供高达三到四倍的电流能力。所选的晶体管设计具有高迁移率和高载流子浓度、高多功能性、高击穿电压和高增益、使用合金层适当设计通道组成以及对微管缺陷的低敏感性等优势。
摘要 Polygonum cognatum Meissn. 是一种野生可食用植物,在土耳其被称为 madimak。其嫩芽在春季栽培并用作蔬菜。本研究评估了不同干燥处理对 madimak 植物颜色属性的影响,这些植物使用两种不同的方法干燥:热风干燥和微波干燥。风干处理分别在 60、70 和 80 °C 下进行。微波干燥使用四种不同的微波功率水平进行,范围在 160 至 750 W 之间。madimak 的微波干燥比热风干燥更快。随着微波功率的提高,干燥时间大大减少。干燥过程在 0.058 到 0.308 小时之间完成,具体取决于微波功率水平,而热风干燥在 2.583 到 4.166 小时之间。微波干燥对样品颜色质量的影响不如热风干燥大。微波干燥植物的叶绿素 a、叶绿素 b 和总叶绿素含量显著保留。颜色和叶绿素属性均表明,与热风或常温干燥相比,微波干燥更适合马迪马克植物。研究发现,在 750 W 微波功率下,颜色变化最小,叶绿素含量最高。此外,80 °C 热风干燥和 160 W 微波功率水平的最低比能量需求分别为 44.58 kWh/kg 和 107.00 kWh/kg。结果表明,热风干燥温度之间的比能量需求没有显著差异,而微波功率水平之间的差异很大。关键词:Madimak、微波、热风、颜色、比能、可食用植物、叶绿素引言叶绿素是分布最广的植物色素,叶绿素 a 和 b 在食品技术中的重要性源于它们在绿色蔬菜中的作用(King 等人,2001)。叶绿素 a 和叶绿素 b 是主要形式,通常存在于常用于食用的高等植物中,它们的比例大约为 3:1。叶绿素 a 和 b 都是四吡咯酞菁氧合物的含镁衍生物。叶绿素 a 和叶绿素 b 在感知颜色和热稳定性方面也不同。叶绿素 a 呈蓝绿色,叶绿素 b 呈黄绿色(Cui 等人,2004)。它们极易在加工和储存过程中降解。叶绿素转化为脱镁叶绿素和其他衍生物会导致从鲜绿色变为暗橄榄绿色或橄榄黄色,最终被消费者视为品质的下降 King 等人(2001 年)和 Ahmed 等人(2001 年)。叶绿素保留对于确定热脱水绿色植物的最终质量非常重要。在较高温度和酸性条件下,叶绿素环中的中心镁被两个氢离子取代,绿色叶绿素转化为橄榄棕色脱镁叶绿素。在约 60–80 o C 的较低温度下,叶绿素酶活性增加,形成绿色叶绿素,然后叶绿素易受镁损失的影响,从而形成橄榄褐色脱镁叶绿素 (Cui 等,2004)。颜色是植物产品的重要质量属性,叶绿素已被用作绿色蔬菜的质量指标 (Guan 等,2005)。Polygonum cognatum Meissn. 是一种野生植物,在土耳其语中称为“madimak”。这种可食用植物是一种多年生细长木本植物。它生长在海拔 720-3000 米的路边、斜坡和悬崖上。春季收集带叶的嫩芽 (Yildirim 等,2003)。植物的新鲜叶子和茎可作为蔬菜食用。干燥的植物可用作药用植物 (Ozbucak 等,2007)。在土耳其民间医学中,它被用于各种目的,例如其利尿作用和治疗糖尿病(Yildirim 等人,2003 年)。脱水是最古老的食品保存方法之一,是食品加工中非常重要的一个方面。产品在干燥过程中产生的热损伤与温度成正比
主要研究目标是减少无人机对我们生活的危害,以及极端组织、毒贩和有组织犯罪分子使用无人机造成的后果。越来越多的涉及改装无人机的事件证明了现有技术在阻止和消除错误无人机方面的弱点,例如手持枪式干扰器、训练有素的鹰、射频干扰器等。这项技术不太可能击落无人机,也无法阻止可编程无人机。本文旨在研究 HPM(高功率微波)的定向能量,利用电磁场强度能量来损坏无人机的结构或烧毁其 PCB 板电子设备。它继续分析使用高频微波功率立即关闭无人机的电子攻击。评估了高微波功率在不同距离和不同天气条件下干扰无人机的有效性。还包括对磁控管耦合系统的锥形喇叭天线的研究,其工作频率为 2.45 GHz。
图 3 收集了两个测试离子源的测量电流 𝐼 sc 和 𝐼 ac 与质量流速 𝑚̇ s 的关系。在隼鸟 2 号源中,屏栅电流对两种推进剂都显示出一个最大值。氪的最大电流 (216 mA) 大于氙气 (171 mA),但达到的最大电流略高,分别为 0.24 (3.8) vs. 0.22 mg/s (2.2 sccm)。超过上述峰值后,𝐼 sc 从“高电流模式”(HCM) 降至低效的“低电流模式”(LCM),如 15–17 中所述,同时反射的微波功率增加。对于氙气,这种转变似乎更为突然。另一方面,氙气和氪气的𝐼ac最小值分别为0.18(1.8)-0.19毫克/秒(1.9 sccm)和0.16(2.5)-0.20毫克/秒(3.3 sccm)。
摘要。鱿鱼(超导量子干扰设备)是能够检测和测量具有前所未有灵敏度的各种物理参数的宏观量子设备。基于纳米布里奇弱环节的鱿鱼显示出对量子信息和量子传感应用(例如单个自旋检测)的越来越多的希望。焦点束蚀刻的纳米三旋翼具有可以增强纳米Quid设备性能的性能,但通常在其非迟发性工作温度范围内受到限制。在这里,我们将使用GA,XE或NE ION离子束源制成的单个弱环或纳米Quid中的纤维膜纳米三旋翼的测量值。根据温度,偏置电流,磁场和微波功率的函数,根据一系列超导性模型进行测量和建模,以改善对相关纳米架参数的理解。我们进一步提出了扩展设备的非滞后工作温度范围的技术。
该提案描述了基于爱因斯坦De-Haas实验的布置。外部施加的磁场通过将微波功率频率降低到铁氧体芯周围的线圈,从而磁化了铁氧体芯。铁磁共振。核心在铁磁共振时达到负渗透性。由于负渗透性,铁氧体应对施加到铁氧体芯一端的DC电场引起的磁性。在某些情况下,负渗透性可能导致磁场的驱逐,导致B等于材料内部的B。这种诱发的现象与在超导体中观察到的Meissner效应有些类似。在负渗透性的情况下,负磁反应有效地将材料的内部屏蔽到外部磁场上。磁场的卷曲为零,导致移动电荷载体上等于零的净力。
2019 年,荷兰埃因霍温理工大学开发了一种隧道二极管,允许输入 2.4 GHz 的 −25 至 −10 dBm 微波功率,与传统 SBD 相比,隧道二极管具有更高的 RF-DC 转换效率。使用由卡诺极限确定的高阻抗(Q 匹配电路)天线也可以获得高 RF-DC 转换效率。利物浦大学开发了一种阻抗 >400- Ω 的低功率宽带整流天线,它在 0.9-1.1 GHz 和 1.8-2.5 GHz 之间实现了 75% 的 RF-DC 转换效率。 2016 年,日本金泽工业大学设计了一种 1.6k 高阻抗整流天线,用于收集 500MHz 的数字电视信号,在 -15dBm 的 RF 功率输入下可获得 49% 的 RF-DC 转换效率,在 -30dBm 的输入功率下可获得 8.7% 的效率
平面超导传输线谐振器可以在多个谐波共振频率下操作。这允许涵盖具有高灵敏度的广泛光谱状态,例如对于低温微波光谱。这种实验的常见并发症是存在不希望的“虚假”其他共振,这是由于谐振器基板或外壳框中的站立波。识别单个共振的性质(“设计”与“伪造”)对于更高的频率或如果包括未知材料特性的元素,那么对于微波光谱而言,可能会变得具有挑战性。在这里,我们讨论了各种实验策略,以区分共面超导谐振器中设计和虚假的模式,这些谐振器以高达20 GHz的频率范围运行。这些策略包括跟踪共振演变与温度,磁场和微波功率的函数。我们还证明了谐振器的局部修饰,通过应用微量的介电或电子自旋谐振材料,可导致各种共振模式中的特征性特征,具体取决于电或磁性微波场的局部强度。
量子传感器、量子信息电路、超导量子比特等领域的最新发展以及更广泛的天文探测和现代通信都依赖于微波光子的精确探测。然而,用于可靠和灵敏地表征固态量子电路(特别是超低功率和光子微波电路)的计量工具严重缺乏。不仅需要确定微波功率,还需要精确和准确地确定单光子特性(包括时间和相位)以及多光子特性(例如重合和纠缠)。目前最先进的低温放大器在高噪声温度方面不足,全球正在探索新型放大器以在灵敏度的量子极限下运行。参数放大器是目前已知的唯一一种实现微波信号量子极限灵敏度的方法。然而,实现足够大且足够平坦的带宽(例如从大约 1 GHz 到 10 GHz)仍然是一项具有挑战性的任务。在具有三波混频的行波放大器中,可以改善当前的情况,但三波混频仅在具有非中心对称非线性的介质中才有可能。设计具有大且可控的非中心对称非线性的非线性介质(量子超材料)的可能性是量子光学的一个重要目标,并且将