按钮布局的一致性,机载显控系统的人机工效研究也 逐渐得到了相关领域的重视。为了解决仪表板日益拥 挤的问题,工程师在第 2 代机电伺服仪表的基础上对 飞行仪表进行综合,也对指示相关信息的仪表进行综 合,减少仪表数量;同时将无线电导航和其他经过计 算机加工的指引信息综合进相关的显示器中,形成第 3 代飞机仪表,即综合指引仪表。综合指引仪表不但 可以显示飞机综合的实时状态信息,同时还通过指引 信息告诉飞行员如何正确操纵飞机,以达到预定飞行 状态或目的地 [5] 。第 3 代头盔显示系统首次采用虚拟 成像技术,可直接将虚拟画面投射到驾驶员的面罩 上,配合计算机图像和数据处理运算技术,具备了实 时呈现画面的能力。 以人工智能、大数据为代表的信息技术在军事领 域广泛应用,现代战争形态演变不断突破,向着机械 化、信息化、智能化的方向发展。进入 21 世纪,触 屏及语音交互的方式取代了烦琐复杂的硬件按钮操 作,更为清晰的数字化屏幕也为信息显示提供了更大 的发展空间。第 4 代新型战斗机的机载设备通过更 大、更清晰的数字化屏幕呈现出更加多样的信息内 容。这一时期的人机交互主要通过数字屏幕进行信息 输出,通过语音、触摸屏和简洁的按键等多通道进行 信息输入。未来飞行员头盔的发展趋势是研制功能强 大、集综合性防护于一体的头盔系统,全息投影技术 也会逐渐发展成熟并应用于头盔显示器中 [6] 。历代战 机座舱显控界面见图 1 。 对战机座舱显控系统的发展,各领域的研究人员 针对人因工效、人机交互、座舱显示技术、人机协同 等方面进行了一系列研究。总结 20 世纪 80 年代至今具 有代表性的人物及研究成果,其研究成果引用量较高, 为座舱显控发展提供了理论依据或技术支撑,见表 1 。 军事技术的发展促使战场环境复杂性的大幅提 升,如 F–35 的大屏幕显示器将远不能满足飞行员获 取信息数据流的显示需求,而未来战斗机为了隐身, 会减小座舱空间,进而缩小座舱显示面积 [25] 。座舱内 的系统控制器将尽可能简化,除了保留一些控制飞行 的基本操作杆和少数与安全相关的控制器,其余的操
1)随着分布式光伏统筹上网电价逐年下降以及储能系统成本降低,建设分布式+储能系统实现 分布式电源全部就地消纳具有较好的经济效益,同时利用储能系统每天“两充两放”的特性, 合理利用阶梯电价,提高系统效益。With the distributed PV grid prices and the energy storage system cost decreasing every year, there is good economic benefit to build the distributed + energy storage system to achieve all the local power consumption, and because the energy storage system charges and discharges twice every day, the step tariff , if well employed, can increase the system benefit. 2)通过能量管理系统控制分布式电源+储能系统平滑输出,减小外部气象条件对分布式电源输 出的影响,提高供电电能质量。Achieving smooth output from the distributed power supply + energy storage system by the energy management system, reducing the impact to the distributed power output from the external weather conditions and improving the quality of power supply. 3)通过分布式电源+储能系统组成并网型微电网系统,当电网故障时,自动切换至独立运行模 式,保持重要负荷连续供电/或者利用储能系统代替企业原有设计起到后备电源(UPS)的作 用。When the grid breaks down, the microgrid system that is composed of the distributed power supply + energy storage system automatically switches to stand-alone mode, which maintains continuous power supply or uses energy storage system to replace the UPS in the original design.
(e) 本公告(及其所含信息)仅供参考,不构成或构成任何发行或出售要约的一部分,也不构成任何购买、认购或以其他方式收购本公司在美国(包括其领土和属地、美国任何州和哥伦比亚特区)或任何其他此类要约或出售为非法的司法管辖区的任何证券的要约的一部分。本公司认为其为“外国私人发行人”(“ FPI ”),该术语定义见 1933 年美国证券法(经修订)(“美国证券法”)第 405 条,并打算尽可能地开展业务以保持其作为 FPI 的地位。本公司证券(“证券”)未根据美国证券法或美国任何州或其他司法管辖区的任何证券监管机构登记,亦不会在该等登记下登记,且不得直接或间接地在美国境内或向美国境内发售、出售、转售、质押、转让或交付,但根据美国证券法的豁免或不受其登记要求约束的交易以及遵守美国任何相关州或其他司法管辖区的任何适用证券法的情况除外。证券未曾在美国公开发售,也不会在美国公开发售;
参 数 名 称 符 号 条 件 最小 最大 单 位 电源电压 V CC — -0.5 +7 V 输入钳位电流 I IK V I <-0.5V 或 V I >V CC +0.5V — ± 20 mA 输出钳位电流 I OK V O <-0.5V 或 V O >V CC +0.5V — ± 20 mA 输出电流 I O -0.5V
I , Aero Vironment 公司的 Puma AE , L-3/BAI 公司的 Geneva Aerospace Mobius , Insitu 公司的
摘要:光纤光流控激光器(FOFL)将光纤微腔和微流控通道集成在一起,为传感应用提供了许多独特的优势。FOFL不仅继承了激光器的高灵敏度、高信噪比和窄线宽等优点,而且还具有光纤独有的易于集成、高重复性和低成本的特点。随着新型光纤结构和制备技术的发展,FOFL成为光纤传感器的重要分支,尤其适用于生化检测。本文综述了FOFL的最新进展。我们主要关注光纤谐振器、增益介质和新兴的传感应用。还讨论了FOFL的前景。我们相信FOFL传感器为生物医学分析和环境监测提供了一种有前途的技术。
扉页 磁控表面粗糙度与弹性模量对磁流变弹性体—铜副滑动摩擦特性影响研究 李睿,1975年生,重庆大学博士研究生,现任重庆邮电大学教授,主要研究方向为智能检测技术、摩擦控制、智能机械结构系统。 电话:+86-135-94078659;邮箱:lirui_cqu@163.com 王迪,1996年生,重庆邮电大学自动化学院硕士研究生,邮箱:812996901@qq.com 李欣燕,1995年生,重庆邮电大学自动化学院硕士研究生。 E-mail:459148593@qq.com 杨平安,1989年生,重庆大学博士研究生,现职为重庆邮电大学讲师,主要研究方向为智能仿生复合材料、柔性传感器、电磁屏蔽材料与结构设计。 电话:+86-151-23254645;E-mail:yangpa@cqupt.edu.cn 阮海波,1984年生,重庆大学博士研究生,主要研究方向为柔性纳米线复合透明电极的构建及其性能提升。 电话:+86-136-47619849;E-mail:rhbcqu@aliyun.com 寿梦杰,1993年生,重庆大学博士研究生,主要研究方向为智能检测技术、摩擦控制、智能机械结构系统。 E-mail: shoumj@cqupt.edu.cn 通讯作者 : 杨平安 E-mail : yangpa@cqupt.edu.cn
应对新兴病毒感染的持续威胁 Yoshihiro Kawaoka - 日本东京大学和国家全球健康与医学中心;美国威斯康星大学麦迪逊分校 yoshihiro.kawaoka@wisc.edu 每年都会发生流感疫情,导致发病率和死亡率上升,尤其是在脆弱人群中,例如幼儿和老年人。此外,偶尔也会发生大流行,例如 1918 年大流行。因此,流感对全球经济产生了巨大影响。相比之下,埃博拉病毒自 1976 年才被发现,直到最近,这种病毒的爆发造成的死亡人数相对较少,因为它们发生在农村偏远地区。然而,2014 年西非的疫情发生在一个人口稠密的大城市地区,改变了我们对埃博拉病毒爆发的理解。2019 年 12 月,SARS-CoV-2 在中国出现并在全球传播,引发了自 1918 年大流行以来的第五次大流行。我将讨论我们最近对这些病毒的研究。为气候驱动的感染扩大做好准备 Rino Rappuoli - 意大利锡耶纳生物技术基金会 rino.rappuoli@biotecnopolo.it 气候变化是传染病的强大放大器,几种热带病原体已经到达欧洲大陆。接触已知病原体的风险增加,以及可能出现具有大流行潜力的未知病原体,要求在诊断、疫苗、抗体和治疗方面进行科学驱动的投资,以减轻新疾病的影响。会议上将讨论世界如何为这种情况做准备的概述。卢布尔雅那微生物与免疫研究所的疫情防控 Tatjana Avšič-Županc - 斯洛文尼亚卢布尔雅那大学 tatjana.avsic@mf.uni-lj.si 卢布尔雅那大学医学院微生物与免疫研究所 (IMI MF UL) 是斯洛文尼亚最大的微生物与免疫医学研究与教学中心。讲座将介绍过去二十年来该研究所实验室在疾病暴发防控方面取得的成就。 推进欧洲研究:国家卫生机构在欧洲伙伴关系中的作用,这些伙伴关系与“同一个健康”抗微生物耐药性、流行病防控以及与 ECRIN/ItaCRIN 的合作相关 Maria Josè Ruiz Alvarez - 研究协调与促进服务 (CORI) 和意大利国立卫生研究院 (ISS)
2022 年 3 月 30 日 — 零件编号或规格 ... (3) 防卫省大臣官房、防卫政策局局长、采购、技术和后勤局局长或陆上自卫队参谋长发布了“装备……”的通知,但如果具有暂停该省提名权限的人批准,则不适用。