“马法特微电网”是一个由欧洲区域发展基金资助的研究项目,由留尼汪岛大学的 PIMENT 实验室和 SIDELEC Reunion 合作开展。该项目的主要目的是开发和改进留尼汪岛的智能电网概念。马法特是一个内陆地区,没有连接到主电网。当地政府的主要目标是通过太阳能微电网设施为大约 300 户家庭通电。我们的案例研究为马法特的 3 户家庭提供了一个实际的能源管理系统应用,旨在最大限度地利用光伏能源并延长电池寿命。该项目与马法特的三户家庭密切合作,每户家庭都安装了人机界面。这项工作是一种初步方法,根据用户的接受程度从理论上评估需求侧管理流程的有效性。结果表明,只要用户遵循给出的建议,能源管理系统就可以减少能源浪费并提高太阳能的有效利用率。
本文考虑了一种离散时间调度方法,用于实现连续时间直流微电网系统的功率平衡。高阶动力学和电阻网络分别用于对集中式微电网系统的电力存储单元和直流总线进行建模。采用图上的 PH(Port-Hamiltonian)公式来明确描述微电网拓扑。这种建模方法使我们能够推导出一个离散时间模型,该模型可以保持物理系统的功率和能量平衡。接下来,使用所提出的控制模型制定了受约束的经济 MPC(模型预测控制),以有效管理微电网运行。网络建模方法和基于优化的控制的系统组合使我们能够生成适当的功率分布。最后,通过在不同场景下使用真实数值数据对特定直流微电网电梯系统进行仿真和比较结果,验证了所提出方法的优势。
本文重点研究了基于模型预测控制 (MPC) 的智能微电网能源调度,该微电网配备不可控(即具有固定功率分布)和可控(即具有灵活和可编程操作)电器、光伏 (PV) 电池板和电池储能系统 (BESS)。所提出的控制策略旨在同时优化规划可控负载、共享资源(即储能系统充电/放电和可再生能源使用)以及与电网的能源交换。控制方案依赖于迭代有限时域在线优化,实施混合整数线性规划能源调度算法,以在随时间变化的能源价格下最大化太阳能自给率和/或最小化从电网购买能源的每日成本。在每个时间步骤中,解决由此产生的优化问题,提供可控负载的最佳运行、从电网购买/向电网出售的最佳能源量以及 BESS 的最佳充电/放电配置。
摘要:为了应对气候变化和全球平均气温上升导致的能源转型,光伏 (PV) 转换似乎是阳光充足地区的一种有前途的技术。然而,光伏发电与天气条件和昼夜循环直接相关,这使其具有间歇性和随机性。因此,将其与储能系统 (ESS) 相结合以确保非互联微电网的长期能源供应是有意义的。在所有技术解决方案中,可再生能源生产的电解氢似乎是一个有趣的候选者。在此背景下,本文提出了一种专用于微电网中氢存储集成的控制策略,以更好地利用光伏发电。目标是根据系统状态和光伏生产间歇性,优化质子交换膜燃料电池 (FC)、碱性电解器 (El)、锂离子电池储能系统 (BESS) 和光伏的微电网管理。首先,开发基于分布式显式模型预测控制 (DeMPC) 的控制策略,以定义 FC、EL 和电池的电流参考。其次,在仿真中验证控制策略的性能,并在电源硬件在环测试台上确认。
w1 冬季 ✓ 50 0.86 w2 冬季 ✓ 100 0.86 w3 冬季 ✓ 50 0.86 w4 冬季 ✓ 100 0.86 w5 春季 ✓ 50 0.86 w6 春季 ✓ 100 0.86 w7 春季 ✓ 50 0.86 w8 春季 ✓ 100 0.86 w9 夏季 ✓ 50 0.86 w10 夏季 ✓ 100 0.86 w11 夏季 ✓ 50 0.86 w12 夏季 ✓ 100 0.86 w13 秋季 ✓ 50 0.86 w14 秋季 ✓ 100 0.86 w15 秋季 ✓ 50 0.86 w16 秋季 ✓ 100 0.86 w17 冬季 ✓ 50 1.72 w18 春季✓ 100 1.72 w19 夏季 ✓ 50 1.72 w20 秋季 ✓ 100 1.72 w21 冬季 ✓ 50 1.72 w22 春季 ✓ 100 1.72 w23 夏季 ✓ 50 1.72 w24 秋季 ✓ 100 1.72 w25 冬季 ✓ 100 1.72 w26 春季 ✓ 50 1.72 w27 夏季 ✓ 100 1.72 w28 秋季 ✓ 50 1.72 w29 冬季 ✓ 100 1.72 w30 春季 ✓ 50 1.72 w31 夏季 ✓ 100 1.72 w32 秋季 ✓ 50 1.72
摘要:由于气候变化挑战和环境法规的演变,港口越来越重视能源效率和低碳能源系统。因此,必须对港口的众多系统进行技术突破,例如港口起重机、海港车辆或停泊船只的电源。这些方面可能需要在港口地区建立微电网。微电网在大陆和岛屿上得到了广泛的发展,主要用于国内负荷。然而,这些在港口地区仍然很少见。它们在这些地方的发展面临着许多挑战,例如高功率要求、对各种负载的监控和管理、能源政策框架等。此外,建立微电网涉及规模和能源管理的研究,以避免成本过高并验证负载要求。本文提供了与海港地区微电网发展相关的文献调查。首先,列出了港口微电网中的主要组件,然后对涉及规模和能源管理的研究进行了回顾。最后,从本次调查中列出了创新概念和障碍,并对全球海港微电网发展进行了最新回顾。
摘要 — 向可持续能源系统的过渡凸显了微电网中可再生能源高效定型的迫切需求。特别是,设计光伏 (PV) 和电池系统以满足住宅负荷是一项挑战,因为需要在成本、可靠性和环境影响之间进行权衡。虽然之前的研究已经采用了动态规划和启发式技术来确定微电网的大小,但这些方法往往无法平衡计算效率和准确性。在这项工作中,我们提出了 BOOST,即电池-太阳能序数优化定型技术,这是一种用于优化微电网中 PV 和电池组件定型的新颖框架。序数优化能够以计算效率评估潜在设计,同时通过对解决方案进行稳健的排序来保持准确性。为了确定系统在任何给定时间的最佳运行,我们引入了一种混合整数线性规划 (MILP) 方法,该方法比常用的动态规划方法成本更低。我们的数值实验表明,所提出的框架可确定最佳设计,实现低至 8.84 ¢/kWh 的平准化能源成本 (LCOE),凸显了其在经济高效的微电网设计中的潜力。我们的工作意义重大:BOOST 提供了一种可扩展且准确的方法,可将可再生能源整合到住宅微电网中,同时实现经济和环境目标。索引术语 — 微电网、序数优化、混合整数线性规划、动态规划
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
分布式能源资源(尤其是太阳能和风能)在电力系统中的渗透率不断提高,但这些资源的间歇性会对电网造成干扰和不稳定。因此,将储能系统集成到电网中是提高电力系统可靠性和性能、确保电力平衡和满足消费者需求的最佳解决方案之一。不同的储能设备技术已被用于支持可再生能源资源的整合,并有助于提高电力操作系统在电网电力波动等关键情况下的管理效率。这项工作的主要目的是测试电池储能系统在微电网出现扰动时减少有功功率波动的有效性。此外,通过比较用于支持电网的不同电池技术的响应,进行了一项比较研究,以验证适合电力系统的电池技术,特别是在电力波动期间适合微电网能源管理的技术,同时,通过使用实时模拟来评估 BESS 的行为、可行性、性能和有效性。
进入21世纪以来,我国发展迅速,电动汽车作为汽油车的替代逐渐进入大众的视野。目前,电动汽车换电问题正成为制约其发展的主要因素,新能源的合理开发与研究成为当务之急。微电网成为符合要求的合理产品。然而,微电网系统并非十全十美,如今的换电站集充放电储能功能于一体,与微电网互动形成能量交换。然而,如今的微电网系统面临能源供需关系紧张、负荷不稳定等问题。如何协调微电网与电动汽车换电站两个运营主体的良好互动,保证各自的利益,最终实现节能减排,利于社会发展的目标具有很强的现实意义。本文对电动汽车换电站与孤立微电网的经济调度策略进行研究。建立基于双层优化理论的经济调度模型,将换流站与孤立微电网作为两个独立的实体;基于多目标优化理论将两者整合为一个系统,研究孤立微电网的经济效益。