高保真量子纠缠是量子通信和分布式量子计算的关键资源,可实现量子态隐形传态、密集编码和量子加密。然而,通信信道中的任何退相干源都会降低纠缠保真度,从而增加纠缠态协议的错误率。纠缠纯化提供了一种缓解这些非理想性的方法,它将不纯态提炼成更高保真度的纠缠态。在这里,我们展示了两个远程超导量子节点之间共享的贝尔对的纠缠纯化,这两个节点通过一条 1 米长的中等损耗超导通信电缆连接。我们使用纯化过程来校正由电缆传输引起的主要振幅阻尼误差,对于更高的阻尼误差,保真度最高可提高 25%。纯化实现的最佳最终保真度为 94.09!0.98%。此外,我们同时使用动态解耦和 Rabi 驱动来保护纠缠态免受局部噪声的影响,将有效量子比特失相时间增加了 4 倍,从 3 微秒增加到 12 微秒。这些方法展示了在超导量子通信网络中生成和保存非常高保真度纠缠的潜力。
量子误差校正1-4通过将多个物理量子器组合到逻辑量子位中,提供了达到实用量子计算的途径,其中添加了更多的量子器,将逻辑错误率指数置于指数抑制。但是,仅当物理错误率低于临界阈值时,这种指数抑制才会发生。在这里,我们在我们最新一代的超导处理器柳树:距离-7代码和与实时解码器集成的距离-7代码和距离-5代码上介绍了两个以下阈值表面代码记忆。将代码距离增加2时,我们较大的量子存储器的逻辑错误率被λ= 2.14±0.02抑制,最终以101 Qubit的距离-7代码为0.143%±0.003%误差误差误差。这种逻辑记忆也超出了盈亏平衡,超过了其最佳物理值的寿命2.4±0.3。实时解码时,我们的系统保持低于阈值的性能,在5到100万个周期的距离时,平均解码器延迟为63微秒,周期时间为1.1微秒。我们还将重复代码运行到距离29,发现逻辑性能受到罕见相关误差事件的限制,大约每小时发生一次或3×10 9周期。我们的结果表明设备性能,如果缩放,则可以实现大规模易于故障量子算法的操作要求。
该软件包包含带有 Accu-ROM TM 的电动助力转向系统仿真环境。该环境可同时仿真电子电路和机械部件。电动助力转向等子系统包含以微秒为单位工作的半导体电子电路以及以毫秒为单位工作的机械部件、齿轮和轴。通常,这种仿真需要较长的仿真时间,因为电子电路和机械部件的时间尺度不同。Accu-ROM 分别计算电子电路和机械部件。它首先验证机械部件,然后简化机械部件模型,最后验证包括电路在内的整个系统。这种方法缩短了整个系统的仿真时间。
•安全:PSA磁带不需要特殊的危险材料处理协议。•组装优化:PSA提供几乎立即的绿色强度,并以微秒而不是数小时或几天测量的治愈时间。磁带在组装时也可以将零件固定在适当的位置。•一致性:PSA在应用时提供一致的厚度。每个电池组都来自组装,其粘合剂的粘合度与其他每个包装都相同。•多功能性:PSA磁带可以层压到泡沫,纤维和胶片,并模切为规格。粘合剂可以使用可增强其易用性(例如易于可移动性/重新定位性),长期耐用性和阻力性的特性进行设计。
近十年来,许多国家都在积极研究超导量子电路的基本量子特性 [1–3]。该领域的进展得益于新型量子比特的出现 [4, 5]、制造方法的改进 [6– 10]、系统尺寸的增加 [2–11] 以及量子比特的相干性 [2, 12]。超导量子比特的主要优势是制造工艺相对简单,采用半导体电子产品生产中广泛使用的标准电子束沉积和纳米光刻方法。超导量子比特的运行基于约瑟夫森效应。[12, 13] 的作者简要介绍了超导量子比特的主要类型,特别是相干时间达到数十和数百微秒的 transmons 和 fluxoniums。
摘要:过渡金属复合物中的热诱导的自旋横断现象是熵驱动的过程,已通过量热法进行了广泛的研究。然而,与分子自旋态切换相关的过量热容量从未在实际应用中探索。在本文中,我们通过实验评估了由自旋杂交膜引起的热阻尼效应,对金属微管的瞬时加热响应,并由电流脉冲加热。由于分子膜的自旋态切换,在数十微秒的时间尺度上,电线温度的阻尼最高可达10%。我们展示了快速的热充电动力学和可忽略不计的疲劳性,与自旋跃迁的固体性质一起,它似乎是在功能设备中实现热能管理应用的有前途的特征。
cs 2 agbibr 6(CABB)被认为是铅卤化物钙钛矿的一种有希望的无毒替代品。但是,低电荷载体收集效率仍然是将该材料纳入光电应用中的障碍。在这项工作中,我们使用稳态和瞬态吸收和反射光谱研究CABB薄膜的光电特性。我们发现,由于薄膜内部多次反射,这种薄膜上的光学测量结果被扭曲。此外,我们使用微秒瞬时吸收光谱和时间分辨的微波电导率测量来讨论这些薄膜电导率损失背后的途径。我们证明,载体损失和定位的综合作用导致CABB薄膜的电导率损失。此外,我们发现电荷载体扩散长度和晶粒尺寸的数量级相同。这表明该材料的表面是电荷载体损失的重要原因。
首先考虑经典解决方案。由于我们对F一无所知,因此我们能做的最好的就是按随机输入进行评估。如果我们很幸运地找到x和x 0,以便f(x)= f(x 0),那么我们有答案,r = x⊕x 0。测试M值后,您将消除大约M(M -1) / 2可能的R向量(即,对于每对M向量的每对X X 0)。当m2⇡2n时,您将完成。因此,平均而言,您需要进行2 n/ 2个功能评估,这在输入的大小上是指数的。对于n = 100,它需要大约2 50⇡1015评估。“以每秒1000万个电话为单位,大约需要三年的时间”(Mermin,2007年,第55页)。我们将看到,量子计算机可以在大约120个评估中以高概率(> 1-10-6)确定R。以每秒1000万个电话,这将需要大约12微秒!
CT 值的范围也有限制,因为 CT 的放电时间决定了振荡器输出脉冲的脉冲宽度。该脉冲(除其他用途外)用作两个输出的消隐脉冲,以确保在转换期间不可能同时打开两个输出。此输出死区时间关系如图 1 所示。低于 0.35 微秒的脉冲宽度可能导致内部触发器切换失败。这将 CT 的最小值限制为 1000pF。(注意:虽然振荡器输出是方便的示波器同步输入,但探头电容会增加脉冲宽度并略微降低振荡器频率。)显然,脉冲宽度的上限由所选开关频率下电源所需的调制范围决定。CT 的实际值介于 1000pF 和 0.1 µF 之间,尽管已经成功实现了 120 Hz 振荡器,其值高达 5 µF,并串联了 100 欧姆的浪涌限制电阻。