Excelitas Technologies® 的新型 µ PAX-3 是一款 2 瓦脉冲氙气光源,旨在将创新的新型灯泡设计与最先进的电路和组件结合到一个封装光源中,该光源可提供具有出色弧稳定性的微秒级宽带光脉冲。紧凑的集成解决方案包含闪光灯、触发电路、电容器充电电源、安装法兰和精密弧对准。µ PAX-3 在一个紧凑的预对准模块中提供各种闪光能量级别和 2 瓦最大功率。它利用 Excelitas 的高稳定性短弧氙气闪光灯。这些氙气灯以其稳定性和长寿命特性而闻名,可产生从紫外线到红外线的连续光谱。出色的稳定性和小巧的外形尺寸使 µ PAX-3 成为分析仪器的理想选择。
探测器、超大样本环境(≈3 2 1.5 m 3 )的定位能力光束线概念 AMP 光束线是一条相干和非相干小角和广角散射((c)-SAXS/WAXS)光束线,用于对真实条件下正在加工或操作的材料进行时间分辨的微束原位/操作研究。AMP 旨在测量材料的结构和动态,跨越从埃到微米的长度尺度,具有微米空间分辨率和几十微秒时间分辨率。其主要特性是能够容纳高达 3×2×1.5 m 3 的大型样本平台和辅助表征技术。这种大样本区域还可用于中等规模样本环境的多设置,能够在不同设置和随附的 X 射线束设置之间自动切换。
微秒相干时间在供体的自旋动力学计算中预测 - 受体电子旋转对PÞA 1A在光系统I(PSI)的光激发后创建。研究了由于各向异性蛋白环境对预测的相干时间T m而引起的核自旋扩散(NSD)的影响。紧密定位的对位于电子旋转的位置5 - 8°A的质子的三元组和三元质子显示为在很大程度上控制T m。对PSI晶体结构的了解允许进行自旋动力学计算,其中去除或替换了特定的辅助因子和氨基酸残基,并且鉴定了控制电子脱碳的各向异性环境特征。最后,我们表明单独的NSD无法解释> 3个较短的实验观察到的相干时间,并暗示关键蛋白质位点的甲基可能解释了这种差异。
瞬态事件的光学成像在其实际发生时间内具有令人信服的科学意义和实际优点。1出现在二维(2D)空间中,并在飞秒(1fs¼10-15s)上发生到微秒(1μS¼1TO-6 s)的时间尺度,这些瞬态事件反映了生物学中许多重要的基本机制。2 - 4但是,许多瞬时现象是不可重复或难以再现的。示例包括自发的突触活动,在不同温度下的5纳米颗粒的发光寿命,6和活组织中的光散射。7在这种情况下,需要大量可重复实验的常规泵 - 探针方法是不可应用的。同时,泵 - 探针接近使用复杂设备的光子到达的时间,以在空间或时间上执行耗时的扫描。在这些情况下,即使瞬态现象可再现,这些
DNA的生物学作用与水溶液中的结构和稳定性密切相关。DNA的完全脱水或用较低极性的溶剂取代水会导致DNA结构发生很大变化[1]。溶液的离子强度的变化产生了显着的结构可塑性[2],并且柜台性质的变化甚至可以逆转双链DNA稳定性的规范规则[3]。 某些渗透液,例如尿素,甲酰胺,氯化硫苷,二甲基硫氧化物或吡啶是化学变性剂[4]。 我们最近使用了微秒长的分子动力学(MD)模拟来证明PYR的非常强的变性特性与其通过在开放的,溶剂暴露的核碱基上堆叠捕获显微镜展开事件的能力有关[5]。 在这里,我们在另一种强大的变性剂的存在下探索了PYR的变性特性:pH。 在这项工作中,我们评估了这两种变性剂的效果是加性,合作或抗合作性的。 我们首先探索了具有不同GC含量的三种DNA双链体在中性pH值下的分泌特性(表1)。 图1(a,b)和补充表S1 所示的结果溶液的离子强度的变化产生了显着的结构可塑性[2],并且柜台性质的变化甚至可以逆转双链DNA稳定性的规范规则[3]。某些渗透液,例如尿素,甲酰胺,氯化硫苷,二甲基硫氧化物或吡啶是化学变性剂[4]。我们最近使用了微秒长的分子动力学(MD)模拟来证明PYR的非常强的变性特性与其通过在开放的,溶剂暴露的核碱基上堆叠捕获显微镜展开事件的能力有关[5]。在这里,我们在另一种强大的变性剂的存在下探索了PYR的变性特性:pH。在这项工作中,我们评估了这两种变性剂的效果是加性,合作或抗合作性的。我们首先探索了具有不同GC含量的三种DNA双链体在中性pH值下的分泌特性(表1)。图1(a,b)和补充表S1
媒体转换卡 最简单的光通信形式是媒体转换器,它本质上是一个单通道多路复用器。该设备将一种电信号(例如以太网或 HD-SDI)转换为光信号,以便通过光纤传输,然后在另一端接收信号并将其转换回电格式。这种简单的转换可以实现非常低的延迟,通常为亚微秒,不包括大约 5 us/km 的固有电缆延迟。媒体转换器通常用于较高数据速率信号(> 10 Mbps),因为较低数据速率信号可以轻松地与同一光链路上的许多其他信号多路复用。媒体转换器的常见信号包括以太网(100 和 1000 Mbps)、HD/3G-SDI(1.485 和 2.97 Gbps)、用于声纳的同轴 ECL/PECL(30 - 150 Mbps)以及各种专有高速数据链路。这些卡无法使用扩展卡进行扩展,但可以使用光学多路复用器卡组合其光学通道。
除了板载上电复位电路外,PRDN/RST 引脚还用作 TPEX 的主复位。PRDN/RST 必须驱动为低电平至少两微秒才能发生复位。PRDN/RST 引脚还可用于将 TPEX 置于非活动状态,从而使设备消耗更少的电量。此功能在电池供电或低占空比系统中很有用。将 PRDN/RST 驱动为低电平会复位 TPEX 的内部逻辑并使设备进入空闲模式。在此模式下,双绞线驱动器引脚 (TXD+/–、TXP+/–) 驱动为低电平,AUI 引脚 (CI+/–、DI+/–) 驱动为高电平,LNKST 和 RXPOL 引脚处于非活动状态,XMT 和 RCV 为低电平。只要 PRDN/RST 有效,TPEX 就会保持空闲状态。在 PRDN/RST 上的信号上升沿之后,TPEX 会保持复位状态 10
摘要 - 现代的实时系统容易受到网络攻击的影响。越来越多的采用多核平台,安全性和非安全关键任务共存,进一步引入了新的安全挑战。现有的解决方案遭受了缺乏决定论或过多成本的损失。本文解决了这些缺点,并提出了一个离线分析,以计算在多核平台上运行的实时任务的所有可行时间表,从而隔离损害任务,同时保证失败操作系统和低成本可重构计划。使用UAV自动驾驶系统在四核平台(Raspberry PI)上使用UAV自动驾驶系统的实验结果表明,所提出的方案会在微秒级别上造成运行时恢复开销。此外,在合成测试案例中,重新配置过程最多涵盖了所有可能的响应的100%。索引项 - 真实时间系统,计划重新配置,多核,安全性。
由于超导电路的量子相干时间已从纳秒秒增加到数百微秒,因此目前是量子信息处理的领先平台之一。但是,连贯性需要通过磁性命中率进一步改进,以减少当前误差校正方案的高度硬件开销。达到此目标的呈铰链,以降低破碎的库珀对的密度,所谓的准颗粒。在这里,我们表明环境放射性是非quilibrium准粒子的重要来源。此外,电离辐射在同一芯片上引入了谐振器中时间相关的准粒子突发,从而进一步使量子误差校正复杂化。在深层铅屏蔽的低温恒温器中运行,将准粒子的爆发速率降低了三十个,并将耗散降低到一个因子四,从而显示了减排在将来的固态量子硬件中减少辐射的重要性。
锂金属阳极固态电池是电动汽车中能量密度最高的电池,过去十年来,人们在研发方面投入了大量资金。虽然大多数研究都集中在防止锂金属枝晶最终导致电池短路,但这些短路的性质仍然难以捉摸。软短路尤其受到关注,甚至在已发表的数据中也未得到认可。在这里,我们全面概述了复合聚合物电解质固态锂金属电池中软短路的检测和分析,以及对软短路动力学的基本理解。由焦耳热、化学反应性和其他过程驱动的微秒到毫秒时间尺度上的软短路瞬时解除短路限制了人们确定电池是否短路的能力。我们提供了多种实验方法来检测和分析任何类型电池中的软短路,作为所有电池研究人员的资源。