b' 在本研究中,我们报告了超快速瞬态热带 (THS) 技术用于测量氮化铝 (AlN) 薄膜各向异性热导率的实现情况。AlN 薄膜是通过在硅基板上制备的氧化硅 (SiO 2 ) 薄膜上在低温 (> 250 C) 下生长的反应性直流磁控溅射制备的。使用产生超短电脉冲\xc2\xad ses 的实验装置对热导率进行精确测量,并在纳秒和微秒时间尺度上电测量随后的温度升高。在 AlN 加工之前,将电脉冲施加在 SiO 2 上图案化的金属化条带内,并在 [0.1 \xe2\x80\x93 10 \xce\xbc s] 范围内选择的时间段内分析温度升高。当厚度从 1 \xce\xbc m 增加到 2 \xce\xbc m 时,AlN 横向平面(平面内)热导率分别从 60 增加到 90 W m 1 K 1(33 \xe2\x80\x93 44 W m 1 K 1)。这清楚地表明了 AlN 薄膜热导率的各向异性。此外,AlN 的体积热容量估计为 ~2.5 10 6 JK 1 m 3 。'
我们分析了结合小处理器和存储单元的量子计算机架构的性能。通过关注整数分解,我们显示了使用带有最近邻居连接的Qubits平面网格相比,加工量量数的几个数量级。这是通过利用时间和空间多路复用的内存来实现的,以在处理步骤之间存储量子状态。具体而言,对于10-3的特征物理门错误率,处理器周期时间为1微秒,分解一个2 048位RSA整数在177天内可以在177天内使用3D仪表颜色代码,假设阈值为0。75%的处理器用13个436个物理Qubits制造,并且可以存储2800万个空间模式和45个时间模式,并具有2小时的存储时间。通过插入其他错误校正步骤,证明1秒的存储时间足以使运行时的成本增加约23%。较短的运行时间(和存储时间)可以通过增加处理单元中的量子位数来实现。我们建议使用用超导量子台制成的处理器与使用稀土离子掺杂的固体中的光子回声原理的处理器之间的微波接口实现这种体系结构。
摘要。机器学习(ML)已成为打击交易欺诈以争取其智能的主流式。对于金融机构和企业,实时欺诈交易的低延迟检测非常重要,因为它可以快速识别和预防。同时通过使用ML来减轻欺诈性交易,同时还减少了潜伏期的努力,为此,可编程网络设备中的推断提供了潜在的解决方案。在本文中,我们介绍了思维,在可编程设备中进行了基于ML的欺诈检测。思维是在软件和硬件网络设备上进行的,包括BMV2,Intel Tofino和Nvidia Bluefield-2 DPU,并通过三个公开可用的交易数据集进行了评估。实验结果表明,MID会实时检测交易欺诈,每秒6.4 Terabits和微秒级的延迟。与基于服务器的解决方案相比,心灵每秒可以处理×800以上的跨动作,以及每笔交易的延迟降低超过×1300。同时,Mind达到了99.94%的基于服务器基准的准确性和93.66%的F1得分,仅在分类性能中显示出边际退化。因此,心灵在服务器数量中节省了大量节省,导致降低成本和能源消耗,同时提供客户体验。
量子低密度平价检查代码的固有退化性对它们的解码构成了挑战,因为它大大降低了经典消息传播解码器的错误校正性能。为了提高其性能,通常采用后处理算法。为了缩小算法解决方案和硬件限制之间的差异,我们引入了一种新的后处理后处理,并具有硬件友好的方向,从而提供了与最新艺术技术相关的错误校正性能。所提出的后处理,称为校验,灵感来自稳定器的启发,同时大大减少了所需的硬件资源,并提供了足够的灵活性,以允许不同的消息时间表和硬件体系结构。,我们对一组帕累托架构进行了详细的分析,这些帕累托架构在延迟和功耗之间具有不同的权衡,这些分析源自FPGA董事会上实施的设计的重新分析。我们表明,可以在FPGA板上获得接近一个微秒的延迟值,并提供证据表明,对于ASIC的实现,可以获得较低的延迟值。在此过程中,我们还揭示了最近引入的T覆盖层和随机层调度的实际含义。
硬件在环 (HIL) 或控制器在环仿真是一种用于开发和测试控制器和保护系统的技术。目标是验证和认证控制器和保护系统软件程序的功能、性能、质量和安全性。为了实现这一点,被测的实际控制和保护设备通过电流和电压接口连接到模拟器,就像在现实生活中一样。模拟器以高精度和高保真度模拟模型系统在正常和故障条件下的稳态和瞬态行为。通过重现现实,控制器被“欺骗”相信它已连接到真实的物理系统。然后就可以获得在任何操作条件下测试控制器和保护设备所需的所有灵活性。电力硬件在环 (PHIL) 是扩展到电力组件的 HIL 概念。在 PHIL 仿真中,I/O 需要高功率流来测试电力转换器、发电机、FACTS 等。成功可靠地实施 PHIL 和 HIL 仿真需要合理的模型、快速的程序执行、反应时间低于几微秒以及快速的 I/O 通信,因此控制器和保护系统在与实际提交的条件相同的条件下进行测试。您还需要一组工具来监控和与模拟器和可视化工具交互以解释结果(范围、图表、数据记录等)。除了可扩展性之外,这些是 OPAL-RT 的 eMEGAsim (tm) 实时数字模拟器的主要功能。
光学非转录表现为相反的激发方向的光的传播差异。非重生光学器件传统上是通过基于法拉第旋转的相对较大的组件(例如光学隔离器)实现的,从而阻碍了光学系统的微型化和整合。在这里,我们通过跨表面的自由空间非偏置传输,该跨表面由由二氧化硅与二氧化钒杂交的二维纳米孔阵列组成(vo 2)。这种效果来自谐振器支持的MIE模式之间的磁电耦合。纳米孔子的非转化响应无需外部偏见而发生;取而代之的是,互惠因触发vo 2相变的入射光即以一个方向的速度而损坏。非偏置传输是在λ= 1.5 µm附近的电信范围内覆盖100 nm以上的宽带。每个纳米架单位电池的体积仅占据〜0.1λ3,跨表面厚度的测量约为半微米。我们的自偏纳米唱片剂在150 w/cm 2或每纳米甲孔子的速度上表现出非股骨的强度下降到非常低的强度。我们估计皮秒级传输降落时间和亚微秒尺度的传输升高。我们的示范将低功率,宽带和无偏见的光学非转录带给纳米级。
ROM 的类型 顾名思义,只读存储器 (ROM) 包含不可更改的永久数据模式。ROM 是非易失性的;也就是说,无需电源即可保持存储器中的位值。 可编程 ROM (PROM) 与 ROM 一样,PROM 也是非易失性的,只能写入一次。对于 PROM,写入过程以电气方式执行,可以由供应商或客户在原始芯片制造之后的某个时间执行。 光可擦除可编程只读存储器 (EPROM) 和 PROM 一样,以电气方式读取和写入。但是,在写入操作之前,必须通过将封装芯片暴露在紫外线下将所有存储单元擦除为相同的初始状态。 更有吸引力的主要读存储器形式是电可擦除可编程只读存储器 (EEPROM)。这是一种主要读存储器,可以随时写入而不会擦除之前的内容;只更新寻址的字节或字节。写入操作比读取操作花费的时间长得多,大约为每字节几百微秒。另一种半导体存储器是闪存(因其重新编程速度快而得名)。闪存于 20 世纪 80 年代中期首次推出,在成本和功能上介于 EPROM 和 EEPROM 之间。与 EEPROM 一样,闪存使用电擦除技术。一整块闪存可以在一秒或几秒内被擦除,这比 EPROM 快得多。
利用相干电磁辐射对基本量子系统进行共振激发是许多物理学实验的核心,例如原子和分子光谱、原子钟、量子信息处理等。相干激光激发有许多应用,特别是需要高精度控制量子叠加态的频率或相位时,但迄今为止它在核物理中几乎没有使用[1]。从典型的核激发能量和可用的激光光子能量之间的巨大不匹配可以理解激光激发原子核的困难。核激发已经在激光产生的等离子体中得到证实,其中相互作用是通过在强激光场中加速的电子介导的,电子在碰撞中或通过X射线范围内的轫致辐射与原子核相互作用[2]。不同的原子核已经通过同步辐射在6 – 60 keV能量范围内的跃迁上进行共振激发,寿命在纳秒到微秒范围内[3]。 Sc-45 的 12.4 keV 共振最近在欧洲 x 射线自由电子激光器 [4] 上被激发,其寿命为 0.47 秒。Th-229 原子核以其独特的低能同质异能态而闻名 [5 – 7] 。其激发能量为 8.4 eV,使核跃迁处于真空紫外 (VUV) 光谱范围内,使其可用于台式激光系统和精密光学工具的实验
小型飞行机器人可以通过保持恒定的发散度,利用仿生光流进行着陆动作。但是,光流通常是根据标准微型摄像机记录的帧序列估算出来的。这需要在机上处理完整图像,限制发散度测量的更新率,从而限制控制回路和机器人的速度。基于事件的摄像机通过仅以微秒时间精度测量像素级亮度变化来克服这些限制,从而为光流估计提供了一种有效的机制。据我们所知,本文首次将基于事件的光流估计集成到飞行机器人的控制回路中。我们扩展了现有的“局部平面拟合”算法,以获得改进的、计算效率更高的光流估计方法,该方法适用于各种光流速度。该方法已针对真实事件序列进行了验证。此外,介绍了一种基于事件的光流估计发散的方法,该方法考虑了孔径问题。开发的算法在四旋翼飞行器上的恒定发散着陆控制器中实现。实验表明,使用基于事件的光流,可以在很宽的速度范围内获得准确的发散估计。这使四旋翼飞行器能够执行非常快速的着陆机动。
高空间分辨率下的抽象神经调节在促进神经科学领域的基本知识和提供新颖的临床治疗方面提高了重要意义。在这里,我们开发了一个锥形光声发射极(TFOE),该发射极(TFOE)产生了一个高空间精度为39.6 µm的超声场,从而使单个神经元或亚细胞结构(例如轴突和轴突)的光声激活能够进行光声激活。在时间上,由TFOE从3 ns的单个激光脉冲转化的亚微秒的单声脉冲显示为迄今为止成功的神经元激活的最短声刺激。TFOE产生的精确超声可以使光声刺激与单个神经元上高度稳定的贴片钳记录集成。已经证明了单个神经元对声学刺激的电反应的直接测量,这对于常规超声刺激很难。通过将TFOE与离体脑切片电生物学耦合,我们揭示了兴奋性和抑制性神经元对声学刺激的细胞型特异性反应。这些结果表明,TFOE是一种非遗传单细胞和亚细胞调制技术,它可能对超声神经刺激的机制有了新的见解。