翼型内部 Ra Ra 冷却设计 喷漆后状态(微米) (微米) 基线叶片 翼展方向 5.0 + 0.6 1.4 + 0.3 弦向 5.7 + 1.7 1.5 + 0.4 基线叶片 翼展方向 3.6 + 0.8 0.8 + 0.15 弦向 3.8 + 0.6 1.0 + 0.2 NETL 双壁 翼展方向 1.1 + 0.2 1.0 + 0.3 弦向 1.1 + 0.15 0.7 + 0.3 平均值 + 2 个标准差
摘要:随着集成电路技术的发展,特别是进入亚微米工艺之后,关键尺寸的缩小和高密度器件的实现,集成电路材料层之间的平整度变得越来越关键。因为传统的机械抛光方法不可避免地会在金属甚至电介质层中产生与器件相同尺寸的划痕,导致光刻中的景深和聚焦问题。第一个实现应用的平坦化技术是旋涂玻璃(SOG)技术。但是该技术不仅会引入新的材料层,而且无法达到VLSI和ULSI技术所要求的整体平坦化。而且旋涂过程中的工艺不稳定性和均匀性无法满足晶圆表面的高平坦度要求。而一些技术如反向刻蚀和玻璃回流虽然可以实现亚微米级的区域平坦化。当临界尺寸达到0.35微米(亚微米工艺)后,上述方法已不能满足光刻和互连制造的要求.20世纪80年代,IBM首次将用于制造精密光学仪器的化学机械抛光(CMP)技术引入到DRAM制造中[1].随着CMP技术的发展,DRAM的制造工艺也发生了巨大的变化.
性能 总系统对准度 ±12.5 微米 精度和重复性 (±0.0005"),6 西格玛,Cpk 大于或等于 2.0* 使用生产环境工艺变量进行鉴定;打印速度、工作台升降和相机移动都包含在能力图中。湿印沉积 ±25 微米 精度和重复性 (±0.001"),6 西格玛,Cpk 大于或等于 2.0* 基于实际湿印,位置精度和重复性由第三方测量系统验证。循环时间 13 秒标准
在当今技术驱动的社会中,许多重要的电子、磁性和光子器件的生产规模不断缩小。为了最大限度地提高元件密度并进一步减小尺寸,这些器件也被制造成多层、部分金属化的结构。一个众所周知的例子是微电子器件/集成电路,其结构可以有一层到五层或更多层,厚度可能只有 2-10 微米(图 1)。在该器件的各个层中,重要特征的尺寸范围可以从大约 100 微米到数十纳米。这种材料、厚度和分辨率超出了传统光学显微镜的范围,但对材料科学、微电子学和新兴的纳米科学界来说至关重要。
制造商 Sirtex Medical Pty Ltd 批准 CE 标志 自 2002 年起 适应症 治疗对化疗有抵抗力或不耐受的患者中原发性结直肠癌引起的不可切除的肝细胞癌 (HCC) 或不可切除的转移性肝肿瘤。同位素 钇-90 衰变产物 锆-90 成分 树脂 比重 1.125-1.6 克/毫升(与红细胞相当) 直径 32.5 微米 ± 2.5 微米(范围 20-60 微米) T 1/2 64.1 小时(11 天内 94%,每小时约 1% 衰变) β 能量(最大) 2.27 MeV(I β = 100%) 活度-剂量换算因子 49.67 Gy/(GBq x Kg) 组织穿透深度 2.5 毫米(平均) 每个球体的放射性 68 Bq ± 10%(在校准日期和时间)* 活性表现 单剂量大小含 3.0 GBq ± 10% 的 Y-90(在校准日期和时间,溶于 5 毫升注射用水,湿润灭菌) 每 3 GBq 小瓶中的微球数量 4400 万*
各种粒子类型可以分为大颗粒(大于1微米),可通过红外光散射检测到最佳检测,而小颗粒(小于1微米),包括烟雾,这些颗粒可通过蓝光散射有效检测到。在获得专利的双波长检测室中,使用精确算法将红色和蓝光散射信号精确组合在一起,以检测火和锂离子电池电池离气颗粒的副产品。这些相同的算法拒绝欺骗性现象的影响 - 在其他烟雾检测技术中未发现的不良警报条件提供抵抗力。