© IFIP 国际信息处理联合会 2021,更正版本 2021 本作品受版权保护。所有权利均由出版商保留,无论涉及全部或部分材料,特别是翻译、重印、重复使用插图、朗诵、广播、在微缩胶片或任何其他物理方式上复制、传输或信息存储和检索、电子改编、计算机软件或通过现在已知或以后开发的类似或不同的方法。本出版物中使用的一般描述性名称、注册名称、商标、服务标记等并不意味着,即使在没有具体声明的情况下,这些名称也不受相关保护法律和法规的约束,因此可以免费用于一般用途。出版商、作者和编辑可以安全地假设本书中的建议和信息在出版之日被认为是真实和准确的。出版商、作者或编辑均不对本文所含材料或可能出现的任何错误或遗漏提供明示或暗示的保证。出版商对已出版地图中的司法管辖权主张和机构隶属关系保持中立。
© Springer International Publishing AG 2015, 2017 本作品受版权保护。所有权利均由出版商保留,无论涉及全部或部分材料,特别是翻译、重印、重复使用插图、朗诵、广播、在微缩胶片或以任何其他物理方式复制、传输或信息存储和检索、电子改编、计算机软件或通过现在已知或今后开发的类似或不同的方法的权利。使用一般描述性名称、注册名称、商标、服务标记等。本出版物中的这些名称即使在没有具体声明的情况下也不意味着这些名称不受相关保护法律和法规的保护,因此可以自由使用。出版商、作者和编辑可以放心地认为,本书中的建议和信息在出版之日是真实准确的。出版商、作者或编辑均不对本书所含材料或可能出现的任何错误或遗漏提供明示或暗示的保证。出版商对已出版地图和机构隶属关系中的司法权主张保持中立。
© 作者,经 Springer Nature Switzerland AG 2022 独家授权 本作品受版权保护。所有权利均由出版商独家和排他性地授权,无论涉及全部或部分材料,特别是翻译、重印、重复使用插图、朗诵、广播、在微缩胶片或任何其他物理方式上复制、传输或信息存储和检索、电子改编、计算机软件或通过现在已知或今后开发的类似或不同的方法。本出版物中使用的一般描述性名称、注册名称、商标、服务标记等并不意味着,即使在没有具体声明的情况下,这些名称也不受相关保护法律和法规的约束,因此可以免费用于一般用途。出版商、作者和编辑可以放心地假设本书中的建议和信息在出版之日被认为是真实和准确的。出版商、作者或编辑均不对本文所含材料或可能出现的任何错误或遗漏提供明示或暗示的保证。出版商对于已出版地图中的司法管辖权主张和机构隶属关系保持中立。
© Springer-Verlag GmbH 德国,Springer Nature 2019 的一部分 本作品受版权保护。所有权利均由出版商保留,无论涉及全部或部分材料,特别是翻译、重印、重新使用插图、朗诵、广播、在微缩胶片或任何其他物理方式上复制、传输或信息存储和检索、电子改编、计算机软件或通过现在已知或今后开发的类似或不同的方法。本出版物中使用的一般描述性名称、注册名称、商标、服务标记等并不意味着(即使没有具体声明)这些名称不受相关保护法律和法规的约束,因此可以免费用于一般用途。出版商、作者和编辑可以安全地假定本书中的建议和信息在出版之日是真实和准确的。出版商、作者或编辑均不对本文所含材料或可能出现的任何错误或遗漏提供明示或暗示的保证。出版商对已出版地图中的司法管辖权主张和机构隶属关系保持中立。
由于特性的独特组合,包括高硬度,低密度,化学和热稳定性,半导体和高中子吸收,硼碳化物(B 4 C)是涉及极端环境的各种应用的潜在候选者。但是,B 4 C的当前应用由于其低断裂韧性而受到限制。在这项研究中,通过同时利用包括裂纹偏转,桥梁和微裂缝韧性在内的多种韧性机制,使用了具有包括Tib 2晶粒和石墨血小板在内的特征的分层微观结构设计。使用现场辅助烧结技术(快速),制造了具有密度和分层微结构的B 4 C复合材料。以前,使用微缩进在微尺度上测量了制造的B 4 C复合材料的断裂韧性,以提高56%。在这项工作中,B 4 C复合材料的断裂韧性在宏观尺度上是使用四点弯曲方法来表征的,并将其与在微尺度上获得的先前结果进行了比较。还进行了B 4 C-TIB 2复合材料的断裂行为的微力学模型,以评估实验观察到的坚韧机制的贡献。在四点弯曲测试中,B 4 C复合材料与TIB 2粒(约15粒体积)和石墨血小板(〜8.7 vol%)增强的B 4 C复合材料均表现出最高的断裂韧性从2.38到3.65 MPA∙MPA∙MPA∙M1/2。测量值低于使用微缩号获得但保持一般趋势的值。压痕和四点弯曲测试结果之间的差异源自凹痕测试期间高接触载荷触发的复杂变形行为。通过微力学建模,由于B 4 C和TIB 2之间的热膨胀不匹配引起的热残留应力,并且B 4 C-TIB 2边界处的弱相互作用被确定为实验观察到的韧性增强的主要原因。这些结果证明了B 4 C韧性的层次微结构设计的有效性,并可以为B 4 C复合材料的未来设计提供具有优化的微结构的未来设计,以进一步增强断裂韧性。
Springer Cham Heidelberg New York Dordrecht London © 作者 2015 本作品受版权保护。所有权利均由出版商保留,无论涉及全部或部分材料,特别是翻译、重印、重新使用插图、朗诵、广播、在微缩胶片或任何其他物理方式上复制、传输或信息存储和检索、电子改编、计算机软件或通过现在已知或今后开发的类似或不同的方法。本出版物中使用的一般描述性名称、注册名称、商标、服务标记等并不意味着(即使没有具体声明)这些名称不受相关保护法律和法规的约束,因此可以自由使用。出版商、作者和编辑可以安全地假定本书中的建议和信息在出版之日是真实和准确的。出版商、作者或编辑均不对本文包含的材料或可能出现的任何错误或遗漏提供明示或暗示的保证。
超导量子器件具有出色的连接性和可控性,而半导体自旋量子位则以其持久的量子相干性、快速控制以及小型化和微缩潜力而脱颖而出。近几年来,在将超导电路和半导体器件结合成混合量子系统方面取得了显著进展,该系统受益于两种成分的物理特性。超导腔可以介导电子自由度(例如半导体芯片上单个电子的自旋)之间长距离的量子相干耦合,从而为量子器件提供必要的连接性。半导体量子点中的电子自旋已经达到了非常长的相干时间,并允许快速量子门操作并提高保真度。我们总结了描述超导-半导体混合量子系统的最新进展和理论模型,解释了这些系统的局限性,并描述了未来实验和理论的不同发展方向。
© 教育传播与技术协会 (AECT) 2018 本作品受版权保护。出版商保留所有权利,无论涉及全部或部分材料,特别是翻译、重印、重复使用插图、朗诵、广播、在微缩胶片或任何其他物理方式上复制、传输或信息存储和检索、电子改编、计算机软件或通过现在已知或今后开发的类似或不同的方法。本出版物中使用的一般描述性名称、注册名称、商标、服务标记等并不意味着(即使没有具体声明)这些名称不受相关保护法律和法规的约束,因此可以免费用于一般用途。出版商、作者和编辑可以安全地假定本书中的建议和信息在出版之日是真实和准确的。出版商、作者或编辑均不对本文所含材料或任何可能出现的错误或遗漏提供明示或暗示的保证。出版商对已出版地图中的司法管辖权主张和机构隶属关系保持中立。
磁性随机存取存储器 (MRAM) 作为一种新兴的非挥发性存储器,具有读写速度快、耐久性高、存储时间长、功耗低等特点,几年前就引起了台积电、三星、格罗方德等大型半导体代工厂的极大兴趣 [1−5]。一方面,MRAM 的高性能特性使其成为 28nm CMOS 技术节点以下嵌入式闪存 (e-flash) 的重要替代解决方案,而 e-flash 存在严重的经济障碍,阻碍了其进一步微缩 [6]。另一方面,MRAM 的目标是成为静态随机存取存储器 (SRAM) 等工作存储器的替代品,以解决先进 CMOS 节点中可能出现的严重漏电问题 [7,8]。然而,由于速度限制和耐久性问题,很难取代L1或L2缓存SRAM,尤其是对于两端自旋转移矩(STT)MRAM [ 9 − 11 ] 。因此,需要进一步探索下一代MRAM器件。
磁性随机存取存储器 (MRAM) 作为一种新兴的非挥发性存储器,具有读写速度快、耐久性高、存储时间长、功耗低等特点,几年前就引起了台积电、三星、格罗方德等大型半导体代工厂的极大兴趣 [1−5]。一方面,MRAM 的高性能特性使其成为 28nm CMOS 技术节点以下嵌入式闪存 (e-flash) 的重要替代解决方案,而 e-flash 存在严重的经济障碍,阻碍了其进一步微缩 [6]。另一方面,MRAM 的目标是成为静态随机存取存储器 (SRAM) 等工作存储器的替代品,以解决先进 CMOS 节点中可能出现的严重漏电问题 [7,8]。然而,由于速度限制和耐久性问题,很难取代L1或L2缓存SRAM,尤其是对于两端自旋转移矩(STT)MRAM [ 9 − 11 ] 。因此,需要进一步探索下一代MRAM器件。