免责声明 本信息是根据美国政府机构赞助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
2 H13 工具钢 3 4 Peeyush Nandwana 1*、Rangasayee Kannan 1、Derek Siddel 2 5 6 1 美国橡树岭国家实验室材料科学与技术部,橡树岭,美国 7 2 美国诺克斯维尔橡树岭国家实验室能源与交通科学部 8 *通讯作者:nandwanap@ornl.gov 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 版权声明:本稿件由 UT-Battelle, LLC 根据与美国能源部签订的合同编号 36 DE-AC05-00OR22725 撰写。美国政府 37 保留,而出版商在接受文章发表时,即承认美国政府 38 保留非独占、已付费、不可撤销的全球许可,以出版 39 或复制本稿件的已出版形式,或允许他人这样做,用于美国 40 政府目的。能源部将根据能源部公共访问计划 42 ( http://energy.gov/downloads/doe-public-access-plan ) 向公众提供这些联邦资助研究的结果。
这是一篇关于先进高强度钢 (AHSS) 微观结构-性能关系理解的最新进展的观点论文。这些合金构成一类高强度可成型钢,主要设计为运输部门的板材产品。AHSS 通常具有非常复杂和多层次的微观结构,由铁素体、奥氏体、贝氏体或马氏体基体或这些成分的双相或甚至多相混合物组成,有时还富含沉淀物。这种复杂性使建立可靠的、基于机制的微观结构-性能关系具有挑战性。目前已有许多关于不同类型 AHSS 的优秀研究(例如双相钢、复相钢、相变诱导塑性钢、孪生诱导塑性钢、贝氏体钢、淬火和分配钢、压硬钢等),并且出现了几篇概述,其中讨论了它们的与机械性能和成型相关的工程特征。本文回顾了该领域微观结构和合金设计的最新进展,特别关注了利用复杂位错亚结构、纳米级沉淀模式、变形驱动转变和孪生效应的含锰钢的变形和应变硬化机制。本文还回顾了微合金纳米沉淀硬化钢和压硬化钢的最新发展。除了对其微观结构和性能进行批判性讨论外,还评估了它们的抗氢脆和损伤形成等重要特性。我们还介绍了应用于 AHSS 的先进表征和建模技术的最新进展。最后,讨论了机器学习、全过程模拟和 AHSS 的增材制造等新兴主题。这一观点的目的是找出这些不同类型的先进钢材在变形和损伤机制上的相似之处,并利用这些观察结果促进它们的进一步发展和成熟。
York,NY。 6英国格拉斯哥大学卫生与福祉学院,英国格拉斯哥大学7 7号心理学系,纽约州纽约州纽约州纽约州精神病学研究院首尔大学北国立大学,纽约州纽约州纽约州纽约州纽约州9号萨克勒发展研究所的神经科学部,York,NY。6英国格拉斯哥大学卫生与福祉学院,英国格拉斯哥大学7 7号心理学系,纽约州纽约州纽约州纽约州精神病学研究院首尔大学北国立大学,纽约州纽约州纽约州纽约州纽约州9号萨克勒发展研究所的神经科学部,
Razvigor Ossikovski, a Hui Ma, b,c,d,* 和 Tatiana Novikova a,* a LPICM、CNRS、巴黎综合理工学院、帕莱索、法国 b 清华大学、物理系、北京、中国 c 清华大学 - 伯克利深圳研究院、精准医疗与健康研究中心、深圳、中国 d 清华大学深圳研究生院、光学成像与传感研究所、深圳市微创医疗技术重点实验室、深圳、中国 e 印度科学教育与研究研究所、物理科学系、加尔各答、印度 f 维尔茨堡大学医院、组织工程与再生医学系 TERM、维尔茨堡、德国 g 弗劳恩霍夫硅酸盐研究所 ISC、再生疗法转化中心 LC-RT、维尔茨堡、德国
1 Schilling C、von Strombeck A、dos Santos JF、von Heesen N。对搅拌摩擦点焊静态性能的初步研究。第二届搅拌摩擦焊国际研讨会 (2ISFSW) [Internet]。瑞典哥德堡:英国剑桥焊接研究所 (TWI);2000 年。可从以下网址获取:http://www.fswsymposium.co.uk/EasySiteWeb/GatewayLink.aspx?alId=1238963
扩散磁共振成像在脑白质中对组织微观结构的体内敏感性独特,在发育过程中经历了重大变化,并且在几乎every的神经系统疾病中受到损害。然而,面临的挑战是开发针对人类MRI扫描中几分钟的细胞特征的生物标志物。在这里,我们量化了多区域扩散建模框架对轴突的密度,方向和完整性的灵敏度和特异性。我们证明,使用基于机器学习的估计量,我们的生物物理模型捕获了轴突在早期发育,急性缺血和多发性硬化症中的文化变化(总n = 821)。微观结构映射的方法论广泛适用于临床环境和大型成像联盟数据,以研究发展,衰老和病理学。
1伦敦帝国学院,英国伦敦帝国学院2先知设计,南旧金山,美国加利福尼亚州,美国3 F. Hoffmann-la Roche Ltd,巴塞尔,瑞士,瑞士4默克公司,南旧金山,加利福尼亚州南旧金山5美国马萨诸塞州剑桥大学的自然和人工智能,美国马萨诸塞州剑桥市9号大街和哈佛大学,美国马萨诸塞州剑桥市10哈佛大学数据科学倡议,美国马萨诸塞州剑桥
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
通过烧结机械合金化的 Fe 和 Si 粉末与 Mn、Co、Al、P 作为 p 型和 n 型掺杂剂,制备了添加了 B 4 C 纳米粒子的 β-FeSi 2 。随后将固结样品在 1123 K 下退火 36 ks。退火后烧结物的 XRD 分析证实了从 α 和 ε 几乎完全转变为热电 β-FeSi 2 相。样品表面的 SEM 观察结果与衍射曲线相符。TEM 观察结果显示 B 4 C 纳米粒子均匀分布在材料中,没有可见的聚集体,并确定了晶粒尺寸参数 d 2 < 500 nm。所有掺杂剂都有助于降低热导率和塞贝克系数,其中 Co 对提高与参考 FeSi 2 相关的电导率的影响最大。结合添加 Co 作为掺杂剂和 B 4 C 纳米粒子作为声子散射体,Fe 0.97 Co 0.03 Si 2 化合物的无量纲性能系数 ZT 在 773 K 时达到 7.6 × 10 –2。将所检测的烧结物与之前制造的相同化学计量但不添加 B 4 C 纳米粒子的烧结物的热电性能进行比较,发现它们总体上具有负面影响。关键词:二硅化铁、纳米粒子、热电材料