晶粒尺寸是确定性的微观结构特征,可以使六角形封闭式(HCP)金属中变形的作用。尽管变形孪生是改善结构合金强度 - 降解性权衡的最有效机制之一,但随着晶粒尺寸的减少,其激活降低。这项工作报告了通过引入延性延展性的以身体为中心的立方体(BCC)纳米层接口的细粒度HCP微结构中变形孪生激活的发现。利用基于激光的添加剂制造的快速凝固和冷却条件,以获得精细的微观结构,并与强化的内在热处理结合使用,允许生成BCC纳米层。原位高能同步加速器X射线衍射允许实时跟踪机械孪生的激活和演变。获得的发现显示了延性纳米层的潜力,用于具有改善寿命跨度的HCP损伤耐受材料的新设计。
摘要近年来,多室模型被广泛用于尝试从扩散磁共振成像 (dMRI) 数据中表征脑组织微观结构。这种方法的主要缺点之一是需要先验决定微观结构特征的数量,并将其嵌入模型定义中。然而,在给定采集方案的情况下可以从 dMRI 数据中获得的微观结构特征数量仍然不清楚。在这项工作中,我们旨在使用自动编码器神经网络结合旋转不变特征来表征脑组织。通过改变自动编码器潜在空间中的神经元数量,我们可以有效地控制从数据中获得的微观结构特征的数量。通过将自动编码器重建误差绘制到特征数量,我们能够找到数据保真度和微观结构特征数量之间的最佳权衡。我们的结果显示了该数字如何受到壳层数量和用于采样 dMRI 信号的 b 值的影响。我们还展示了我们的技术如何为更丰富地表征体内脑组织微观结构铺平道路。
添加性生产的金属零件的抽象设计需要组合模型,以预测微观结构,制造和操作条件的零件的机械响应。本文记录了我们对空军研究实验室(AFRL)添加剂制造建模挑战3的反应,该挑战3要求参与者预测IN625的拉伸优惠券作为微观结构和制造条件的函数的机械响应。代表性体积(RVE)方法与晶体可塑性材料模型结合在一起,该模型在用于应对挑战的快速傅立叶变换(FFT)框架内求解。在竞争期间,材料模型的量化被证明是一个挑战,这促使本手稿中使用适当的概括分解(PGD)引入了本手稿。最后,一种称为自洽聚类分析(SCA)的机械减少阶方法,显示为解决这些问题的FFT方法的替代方法。除了提出反应分析外,还讨论了与建模相关的一些物理解释和假设。
摘要:熔融生长氧化铝基复合材料因其在航空航天应用方面的潜力而受到越来越多的关注;然而,快速制备高性能部件仍然是一个挑战。本文提出了一种使用定向激光沉积(DLD)3D 打印致密(< 99.4%)高性能熔融生长氧化铝-莫来石/玻璃复合材料的新方法。系统研究了复合材料的关键问题,包括相组成、微观结构形成/演变、致密化和力学性能。利用经典断裂力学、格里菲斯强度理论和固体/玻璃界面渗透理论分析了增韧和强化机制。结果表明,复合材料由刚玉、莫来石和玻璃或刚玉和玻璃组成。随着初始粉末中氧化铝含量的增加,由于成分过冷度的减弱和小的成核过冷度,刚玉晶粒逐渐从近等轴枝晶演变为柱状枝晶和胞状结构。氧化铝含量为 92.5 mol%时显微硬度和断裂韧性最高,分别为 18.39±0.38 GPa 和 3.07±0.13 MPa·m 1/2 ;氧化铝含量为 95 mol%时强度最高,为 310.1±36.5 MPa。强度的提高归因于微量二氧化硅掺杂提高了致密性,同时消除了残余应力。该方法揭示了利用 DLD 技术制备致密高性能熔融生长氧化铝基复合材料的潜力。关键词:激光;增材制造;氧化铝;莫来石;微观结构;力学性能
摘要 — 金属增材制造 (AM) 为空间控制制造后的微观结构和性能提供了可能性。然而,由于驱动微观结构结果的固态扩散转变在温度方面由非线性 ODE 控制,而温度本身又由整个零件域上的 PDE 控制,因此求解实现所需微观结构分布所需的系统输入已被证明是困难的。在这项工作中,我们提出了一种用于金属 AM 中微观结构空间控制的轨迹优化方法,我们通过控制电子束粉末床熔合 (EB-PBF) 中低合金钢的硬度来证明这一点。为此,我们提出了热和微观结构动力学模型。接下来,我们使用实验数据来识别微观结构转变动力学的参数。然后,我们将空间微观结构控制作为有限时域最优控制问题。使用具有 GPU 加速的增强拉格朗日微分动态规划 (AL-DDP) 方法计算最佳功率场轨迹。然后通过近似方案在 EB-PBF 机器上实现所产生的随时间变化的功率场。对所得硬度的测量表明,优化的功率场轨迹能够紧密产生所需的硬度分布。
图 3:(a) Ti64+C、(b) Ti64+C 和 Ti64 界面以及 (c) Ti64 的微观结构。(d) Ti64+C+LP 的 HAZ 微观结构、(e) HAZ 和 Ti64+C 界面以及 (f)
1 华南理工大学机电与汽车工程学院,广州 510641;mewdlaser@scut.edu.cn (DW); 202020100649@mail.scut.edu.cn (HW); xjchan001@163.com (XC) 2 宁波大学冲击与安全工程教育部实验室,宁波 315211 3 攀钢集团研究院有限公司钒钛资源综合利用国家重点实验室,攀枝花 617000;ludong_1786@163.com (DL); cgvermouth2022@163.com (XL) 4 四川省先进金属材料增材制造工程技术研究中心,成都先进金属材料产业技术研究院有限公司,成都 610300,中国 * 通讯作者:liuyang1@nbu.edu.cn (YL); cjhan@scut.edu.cn (CH)
使用综合建模框架研究了一种将激光粉末床熔合 (PBF-LB) 与层间打磨相结合的混合金属增材制造 (AM) 工艺,以提供新的见解,说明激光粉末床熔合工艺产生的不均匀微观结构和残余应力如何影响层间打磨过程中产生的诱导残余应力场。研究人员最近研究了类似的混合金属增材工艺导致的微观结构变化,然而,他们只是假设由此产生的微观结构对诱导残余应力有一定影响。此外,研究人员通过数值研究了打磨/滚压工艺参数对诱导应力的影响,但忽略了微观结构的影响,从而做出了均匀、各向同性的假设。这种做法抑制了对不均匀熔合层中可能存在的微观结构驱动的各向异性的预测。本文通过参数化研究了微观结构建模、固有残余应力映射和环境温度对混合金属增材工艺过程中诱导残余应力的影响。所展示的建模框架结合了激光粉末床熔合过程中产生的固有残余应力以及预测的微观结构,在随后的打磨模拟中阐明它们对打磨引起的残余应力的单独和综合影响。研究结果表明,对不均匀的 PBF-LB 微观结构进行建模会沿打磨表面引入塑性应变和残余应力的各向异性分布;沿处理过的表面平面应力分量的周期性与 PBF-LB 扫描线相重合。固有残余应力对打磨引起的残余应力的影响不太显著,但仍然可以观察到。升高的温度不仅会降低引起的压缩残余应力的幅度,而且还会导致沿扫描线和阴影空间预测的残余应力分量幅度变化较小。所提出的框架为微观结构和 PBF-LB 残余应力对打磨引起的应力的解耦影响提供了新的见解,而这些影响是无法通过实验技术区分的。然而,试样深度方向上的平均残余应力趋势以及抛光后的表面硬度值分别与文献中记录的X射线衍射和微压痕测量结果具有良好的一致性。
近等原子NiTi相的Ni含量在稳定的成分范围内[1]。因此,发生MT的温度范围决定了NiTi主要用作致动器或基于形状记忆效应或超弹性的生物医学设备。结合金属AM工艺可获得的复杂几何特征,利用形状记忆效应可以制造4D材料,其中时间维度被添加到材料几何形状中。由于NiTi合金是研究最广泛的SMA之一,因此它们也被探索作为AM材料,主要是通过使用粉末床熔合技术,例如选择性激光熔化(SLM)、电子束熔化(EBM)和直接能量沉积(DED)[2e4]。这些AM工艺的特点是几何精度高、能够创建内部通道、表面粗糙度合理,以及能够在材料中产生晶格结构[5e7]。然而,与粉末床熔合技术相比,激光金属沉积 (LMD) 等 DED 工艺吸引的研究关注较少 [8,9]。镍钛诺 (镍和钛的合金) 的 AM 在控制构建部件中的最终 Ni 含量方面可能非常关键,特别是由于 Ni 的优先汽化 [10]。这意味着在 AM 过程中可能会发生化学变化,导致原料偏离初始化学成分。AM 工艺过程中的 Ni 损失会导致部件的最终使用问题以及由材料形状记忆行为的局部差异引起的工艺不稳定性。因此,应仔细选择原料材料以潜在地补偿 Ni 的损失。在这方面,通过雾化生产粉末原料对于控制和维持生产批次内和生产批次之间所需的化学成分可能很麻烦。这种变化对 NiTi 合金性能来说可能更为关键,因为它对其化学成分高度敏感。已有研究调查了粉末和线材原料的元素混合,以解决 DED 工艺中化学成分变化的问题 [11, 12]。尽管 NiTi 粉末原料尚未被 AM 最终用户广泛使用,但细 NiTi 线材在市场上广泛可用,并正在开发用于各种应用。商用 NiTi 线材有不同的直径,价格明显低于具有相同化学成分的粉末原料。在使用 NiTi 线材的 DRD 工艺中研究了电弧和等离子等不同热源 [13 e 17]。最近,已证明使用脉冲波 (PW) 激光发射可有效沉积小直径线材,并且与线材直径相比,轨道宽度不会显着增大 [18]。微激光金属丝沉积 (m LMWD) 是一种制造小型 3D 组件或小型半成品零件(例如板、管和环)的好方法,这些零件由镍钛合金制成。与粉末沉积相比,该工艺本质上更安全,原料尺寸与市售 NiTi 丝的直径(0.4 e 0.5 毫米)相当。m LMWD 工艺的可行性已在多种材料中得到证实,例如不锈钢 [18]、AlSi 12 合金 [19] 和以 Dy 为主要合金的 Mg 合金
摘要:本文报道了一种简单廉价的湿化学法合成 Fe/Cr 共掺杂氧化铜纳米粒子的详细方法。用溶胶-凝胶化学法制备的纯 CuO 纳米粒子和 Fe、Cr 取代的 CuO 纳米粒子适合工业应用。初步的 X 射线衍射和 Rietveld 细化研究表明,该纳米粒子具有纯晶体性质,单斜晶体具有 C2/c 相。根据 Scherrer 公式计算的平均晶粒尺寸为 21nm 量级,进一步的观察表明,随着浓度的增加,晶体尺寸增加。扫描电子显微镜 (SEM) 图像显示粒子在 20-30nm 范围内。拉曼光谱研究表明,掺杂 Cr 和 Fe 的 CuO 纳米粒子中存在分子团。