背景:神经外接口是侵入性最小的周围神经接口之一,因为它们位于神经外部。然而,与侵入性更强的接口相比,这些电极可能存在选择性和灵敏度较低的问题,因为目标神经纤维与电极的距离更远。新方法:通过微加工技术实现了溶解和吸引接口 (LACE),并旨在提高选择性和灵敏度,同时保持接口格式。它的工程设计在之前的工作中有所描述。LACE 是一种集成了微电极和微流体通道的混合接口。最终目标是通过微通道局部输送 (1) 溶解剂以去除将电极与神经纤维分开的结缔组织,和 (2) 神经营养因子以促进暴露的神经纤维轴突发芽到嵌入电极的微流体通道中,从而提高束状选择性和灵敏度。在这里,我们重点展示微流体和微电极在急性准备中的体内功能,其中我们评估局部去除结缔组织并用微通道嵌入微电极记录和刺激大鼠坐骨神经神经活动的能力。与现有方法的比较:虽然神经外接口优先考虑神经健康,而神经内接口优先考虑功能,但 LACE 代表了一种新的神经外方法,它可能在两个目标上都表现出色。结果:手术植入显示经过小心和最少的操作后,LACE 功能得以保留。体内电评估表明放置在微流体通道内的微电极能够成功刺激和记录来自大鼠坐骨神经的复合动作电位。此外,通过微通道输注胶原酶后,富含胶原的神经外膜被局部去除,并通过显微镜确认。结论:在对大鼠坐骨神经进行的急性实验中证明了使用集成微电极和微流体的cuffi来刺激、记录和输送药物以局部溶解神经外膜层的可行性。
凹坑表面技术旨在通过涡流强化通道中的传热,同时保持水力损失的适度增长,该技术在热能工程中有着广泛的应用[1,2]。微电子领域对此也产生了一定的兴趣[3-5],而关于普朗特数对层流传热强化影响的研究发表得就更少了。具体来说,在综述[2]中提到了[6,7]项研究,其中讨论了变压器油在加热壁面上具有单排球形和椭圆形凹坑的微通道中的流动。研究发现,在一个加热到 30 ◦ C 的九段微通道(宽度为 2,高度为 0.5,以通道高度为单位)的壁上,在低速(雷诺数 Re = 308)变压器油流动的情况下,定位具有中等深度(0.2)和螺距为 1.5 的球形凹坑,可以促进涡流强化传热,并且与光滑通道的情况相比,该壁面的传热增加了约 2.5 倍,水力损失减少了 7%。与光滑通道的情况相比,具有相同斑点面积(宽度为 0.55,长度为 1.5,以底部凹坑斑点直径为单位)和相同深度的椭圆形凹坑可以使传热进一步增强 3.4 倍(即,总共增强了 8.5 倍),水力损失减少 2.1%。 [8] 中发现了具有稀疏单排倾斜槽的通道稳定段中层流气流的局部加速。形成剪切流中的最大纵向速度几乎是平面平行通道中最大流速的 1.5 倍。后来确定,热效率由冲洗通道上平均的相对总努塞尔特数指定
由于电子零件预期的功率耗散和功率密集,以满足未来的太空任务应用,因此将需要进行热控制硬件和技术的进步,以保持任务温度和可靠性。这样的应用程序正在冷却与空间激光器相关的电子产品。激光冷却要求可以通过单相热传输到面向空间的散热器的情况下满足,并可能包含相变材料。未来的激光冷却要求将需要更高级的硬件,例如微通道,喷雾冷却和喷气撞击。本报告描述了与当前和未来激光冷却需求相关的热控制硬件,并提供了满足未来激光冷却目标的建议。
微生物腐蚀 (MIC) 是由微生物代谢、腐蚀性化合物和金属之间的复杂相互作用引起的。MIC 已使用间歇反应器或循环回路系统或连续搅拌釜式反应器 (CSTR) 进行了广泛探索。由于营养限制以及影响微生物生长和生物膜形成的腐蚀产物和废物的积累,间歇系统和循环系统都可能提供令人困惑的结果。此外,CSTR 需要大量流体。为了克服这些缺点,我们开发了一种新型微流体微生物腐蚀模型“微流体 MIC 模型:杀菌剂研究”(图 1),由碳钢涂层玻璃载玻片组成,该载玻片粘合到透明聚合物聚二甲基硅氧烷 (PDMS) 内部的微通道上。该流动模型是一个连续的一次流通单元,类似于管道,其中 MIC
大多数此类系统都需要昂贵的高精度光学设备,如激光器、光谱仪和嵌入在设备中的光纤。[19,22] 细胞计数器还依靠加压管系统在微通道中聚焦流体动力流。[23,24] 因此,这些传感器受到其结构刚性和繁琐的光电装置的限制。这使得这些传感器不适合在临床场景中使用,例如在结肠镜检查期间,因为结肠镜检查需要在曲折区域中连续移动,并且需要实时收集数据(即检测出血)。在设计结合软光学传感的 LOC 设备方面已经取得了进展。[25 – 27] 许多光流体传感器已经成功地将聚合物波导集成到微流体中的光中
21天的阿育吠陀恢复Rasayanam计划可实现完整的健康状况。两周后,清洁治疗使身体更加容纳对药用计划Rasayanam,这有助于保持身体年轻和敏捷,以保持健康和寿命,并增加身体和心理能力。恢复活力/rasãyana剂通过不同模式(例如RASA(组织转移),Agni(消化火)和Srota(微通道)等不同模式来促进营养。这是阿育吠陀免疫学如何在微型营养和免疫增强作用之间建立联系。重大清洁治疗(如药物灌肠)将包括5至6天,以平衡体内的doshas。
摘要 与年龄相关的肌肉骨骼疾病(包括骨质疏松症)很常见且与长期发病有关,进而严重影响医疗保健系统的可持续性。因此,迫切需要开发可靠的疾病和药物筛选临床前模型,以便以个性化的方式验证新药,而无需进行体内检测。在骨组织中,虽然骨细胞 (Oc) 网络是一个公认的治疗靶点,但目前的体外临床前模型无法模拟其生理相关且高度复杂的结构。为此,需要多种特征,包括拟骨细胞外基质、动态灌注和机械提示(例如剪切应力)以及 Oc 的三维 (3D) 培养。我们在此首次描述了一种基于 96 个微型芯片的高通量微流控平台,用于大规模临床前评估以预测药物功效。我们通过开发和注射一种高硬度的类骨 3D 基质,对一种可实时可视化并配备多芯片的商业微流体装置进行了生物工程改造,这种基质由富含胶原蛋白的天然水凝胶与羟基磷灰石纳米晶体的混合物制成。微通道中充满了拟骨基质和 Oc,受到被动灌注和剪切应力。我们使用扫描电子显微镜对材料进行初步表征。将材料注入微通道后,使用共聚焦显微镜和荧光微珠检测体积变化和水凝胶内细胞大小物体的分布。通过测量细胞活力、评估表型标志物(连接蛋白 43、整合素 α V/CD51、硬化蛋白)、树突量化和对合成代谢药物的反应性来监测 Oc 的 3D 树突网络的形成。该平台有望加速旨在调节骨细胞生存和功能的新药开发。
2020 年 6 月 22 日星期一 LAAS-CNRS,会议厅,7 avenue du Colonel Roche,31400 Toulouse FluidFM 技术将 AFM 与微通道 AFM 探头 1 相结合。在该系统中,微型通道集成在 AFM 悬臂中并连接到压力控制器系统(压力范围从 -800 到 1000 mbar),从而创建一个连续且封闭的流体导管,可用溶液填充,同时该工具可以浸入液体环境中。悬臂末端的尺寸范围为 300 nm 至 8 µm 的孔径允许局部分配液体。然后通过标准 AFM 激光检测系统确保力反馈,该系统测量悬臂的偏转,从而测量施加到样品上的力 1 。
在合成过程中,纳米材料会逐渐发生转变,从而产生明确的纳米晶体特性。目前,工业上最广泛使用的是纳米材料的批量合成。然而,由于批量反应器内混合不一致、局部浓度和温度变化,出现了可重复性和可扩展性问题。在流动合成中,使用微流体反应器可以克服这些限制,因为大的表面积与体积比可以增强热量和质量传递,从而加快反应速度并提高产量。[4c,5] 在快速化学中,化学转化发生得非常快,并且仅通过混合过程进行控制。因此,微流体系统内的增强混合使涉及不稳定中间体的快速连续反应能够发生 [6],由此产生的均质环境提高了对所需产品的选择性,从而提高了反应产量。此外,流动化学可以通过控制反应的停留时间,在不稳定的反应性物质分解之前将其分离 [7],方法是调节反应物的流速或微反应器长度。高混合性是微流体系统的一个关键优势,尽管在层流状态下,缓慢扩散占主导地位。[8] 微通道内产生的抛物线速度分布导致较长的停留时间,这不可避免地会产生粒度分散性,[10,35] 如图 1A 所示。促进对流并增强微通道内的混合是减少这种多分散性的一种方法,例如,通过在拐角和弯道引入 Dean 涡流或通过分段液-液/液-气流动引入 Taylor 涡流,[10,36] 如图 1B 所示。此外,流动化学中对反应参数的严格控制是实现实验室间反应条件标准化的一个主要优势,从而提高了实验的可重复性。[10] 在安全性方面,微流体系统消耗的危险试剂量较少,降低了安全风险,并允许使用否则会非常危险的极端化学条件。
使用数值分析比较了具有不同内部结构的七个水冷微型冷水冷板的热和液压性能。最近对高性能计算的需求不断提高,导致电子设备的热管理挑战。除了危险的片上温度,异质整合和升高温度(热点)的局部区域还导致芯片级温度分布不均匀。结果,电子设备的寿命和可靠性受到不利影响。由于限制了气冷散热器,开发了几种新方法,例如液体冷却的微通道冷板,以解决这些挑战。这项工作的目的是提供比较的数值研究,以了解不同微型通道冷板内部结构在具有不均匀功率图和热点的芯片的热管理中的有效性。冷板热