自1970年代提交的微针或微膜斑块(地图)以来,利用地图作为药物输送系统的研究已经显着,这证明了从简单的“ poke and Poke and poke”固体图的过渡到诸如水解系统的生物响应系统的开发,例如诸如HydrogeL型和散布型的Bio响应系统。除了在地图上进行了广泛的搜索以改善透皮药物输送外,人们对使用这些设备进行传染病也越来越兴趣。这是由于该药物输送平台的最低限度性质,使患者能够在没有医疗保健专业人员帮助的情况下进行自我管理治疗。本演讲将对地图的潜在效用进行批判性分析,以管理在全球范围内仍然流行的传染病。这种疾病涵盖的疾病包括结核病,皮肤感染,疟疾,抗元抗素的金黄色葡萄球菌感染。这些疾病在全球范围内施加了相当大的社会经济负担,其影响在低收入和中等收入国家(LMIC)中受到了影响。由于地图应用的无痛性和微创性质,该技术还提供了一种有效的解决方案,不仅可以用于提供治疗剂,还为疫苗和预防剂的管理提供了有效的解决方案,可用于防止出现的感染的扩散和爆发。
* 通讯作者:Sara Mahmoud Fahmi,电子邮件:malakebrahem312@gmail.com,电话:01016189911 摘要背景:微针已成为一种很有前途的透皮给药技术,它提供了一种微创方法来增强外用药物的渗透。尽管它在皮肤病治疗中的应用越来越广泛,但关于其机制、优势和治疗用途的全面综述却很少。目的:本综述旨在全面概述微针作为一种外用药物输送方式,包括其作用机制、优势、劣势以及在化妆品和治疗输送中的应用。方法:在多个数据库(包括 PubMed、Scopus 和 Web of Science)中进行了广泛的文献检索,以确定与微针及其在药物输送中的应用相关的研究。该综述重点关注近二十年发表的文章。由于缺乏翻译相关来源,非英语语言的文献不合格。结论:微针是一种多功能且有效的透皮给药方法,在美容和治疗领域都有广泛的应用。正在进行的研究和技术进步有望进一步提高其功效和安全性,巩固其在现代皮肤病治疗中的作用。关键词:微针、透皮给药、美容皮肤病学、治疗给药、外用药物、皮肤嫩肤、疫苗给药。介绍
发现由于神经递质水平异常而引起的神经系统疾病被发现是长期残疾的主要原因,也是全球死亡率方面的第二个主要原因。1在印度,在2013年至2025年期间,神经系统疾病估计增加23%。2也据报道,由于最近的Covid-19大流行,认知,精神病和神经功能受到SARS-COV-2的影响。3因此,在这方面,神经递质的检测和监测是显着的。神经递质是一种化学信使,其功能与中枢神经系统直接相关,并且可以在各种生理和心理活动中。4个神经递质作为响应
微针 (MN) 为提高透皮给药和诊断的有效性提供了一种有希望的解决方案。然而,大规模制造、部分 MN 渗透和不受控制的药物输送等挑战限制了该技术的有效性。为了克服这些挑战,当前的研究检查了皮肤应变和振动对 MN 插入和药物输送的影响。开发了一种新型多功能冲击涂抹器,用于改善皮肤插入,该涂抹器结合了皮肤拉伸、偏心旋转质量 (ERM) 和线性谐振致动器 (LRA) 微振动功能。此外,使用双光子聚合 (TPP) 和软压花工艺开发了一种用于溶解微针贴片 (DMNP) 的可扩展复制方法。当使用不同频率的 ERM 和 LRA 微振动应用时,DMNP 用于评估模型药物荧光素钠盐 (FSS) 的扩散和浓度。此外,还提出了一种新的计算机模拟方法,将微纳植入多层超弹性皮肤模型,并结合皮肤应变和振动效应。结果表明,施加皮肤应变和振动可降低微纳植入所需的力,并增强药物在皮肤中的溶解和扩散深度,从而提高微纳装置的药物渗透性和有效性。
微针作为一个多功能药品平台,可以利用该药物在皮肤中和整个皮肤中运送药物。在当前的工作中,聚(N-异丙基丙烯酰胺)(PNIPAM)合成并将其表征为开发生理响应式微针的基于微对药物的药物递送系统的新型材料。通常,该聚合物在较低温度下的膨胀状态和较高温度下更疏水状态之间可逆地过渡,从而实现精确的药物释放。这项研究表明,溶解由PNIPAM制成的微针斑块,结合了Bis-PNIPAM(一种交联聚合物变体)具有增强的机械性能,这可以从微针的较小高度降低(〜10%)中可见。尽管仅使用PNIPAM的微针是可以实现的,但它表现出较差的机械强度,需要包括其他聚合物赋形剂(例如PVA)来增强机械性能。此外,热响应聚合物的结合对针的插入性能没有显着(p> 0.05),因为所有配方都插入了500 µm的所有配方中,将其插入离体皮肤中。Furthering this, the needles were loaded with a model payload, 1,1 ′ -dio ctadecyl-3,3,3 ′ ,3 ′ -tetramethylindodicarbocyanine perchlorate (DID) and the deposition of the cargo was moni tored via multiphoton microscopy that showed that a deposit is formed at a depth of ≈ 200 µ m.另外,还发现交联 - PNIPAM(BIS-PNIPAM)制剂仅在4小时后才表现出染料的显着皮肤,与所使用的赋形剂基质无关。在非交联的PNIPAM制剂中不存在此现象,表明BIS-PNIPAM微针中的沉积物形成。总的来说,这项概念证明的研究使我们对使用PNIPAM溶解微对甲的制造的可能性提出了我们的理解,这可以利用,该制造可以用于将纳米颗粒沉积到真皮中,以在皮肤内扩展药物释放。
活检是肿瘤诊断的黄金标准,因为该技术提供了有关肿瘤发生和进展的高度详细且可靠的信息。类似于沙漠甲虫的离散性润湿性,在这项研究中,开发了荧光聚合酶链反应(F-PCR)微针阵列(MNA)平台,用于有效的空间肿瘤活检。通过自下而上的自组装和自上而下的Photolithog-raphy的耦合策略来制造此MNA。它包括疏水二氧化硅组装的底物和石墨烯气凝剂 - 凝胶凝胶混合微针峰。从其石墨烯混合微尼峰的亲水性和吸收能力中造成的好处,MNA可以轻松地穿透组织样品并立体地收集肿瘤酸性生物标志物。此外,由于平台的离散性,组织流体和PCR液体都可以轻松从底物中去除,并且每个微针峰都与直接导致F-PCR反应进行肿瘤标记物发现的F-PCR反应相似。基于这些优势,F-PCR-MNA平台被揭示为在Standard溶液,小鼠组织样品和临床标本中检测肺癌的DNA生物标志物的理想选择,从而将其实际潜力作为创新的肿瘤生物瘤系统。
摘要简介:远程缺血条件上调会响应缺血 - 再灌注损伤,内源性保护途径。这项研究检验了以下假说:肢体远程缺血性(RIPERC)通过肾素 - 血管紧张素系统(RAS)/可诱导的一氧化物氧化物合酶(INOS)/ apelin途径发挥心脏保护作用。再灌注;假手术大鼠用作对照。RIPERC是由四个周期(5分钟)的肢体缺血再灌注以及双侧肾脏缺血引起的。通过肾脏(BUN和肌酐)和心脏(肌钙蛋白I和乳酸脱氢酶)损伤生物标志物评估功能性障碍。结果:肾脏I/R损伤增加了RIPERC组减少的肾脏和心脏损伤生物标志物。肾脏和心脏的组织病理学发现也暗示了改善损伤引起的RIPERC组的变化。心脏电生理学的评估表明,RIPERC可以改善P波持续时间的下降,而不会显着影响其他心脏电生理学变化。此外,肾脏I/R损伤增加了血浆(322.40±34.01 IU/L),肾脏(8.27±1.10 mIU/mg的蛋白质)和心脏(68.28±10.28±10.28 miU/mg蛋白质/毫克蛋白质)蛋白质 - 蛋白质)血管素 - 转换剂量(ACE)的升高和培训均与升高相关性。 (25.47±2.01&16.62±3.05μmol/L)和硝酸盐(15.47±1.33&5.01±0.96μmol/L)级别;这些变化被RIPERC逆转。此外,肾脏缺血 - 再灌注损伤显着(P = 0.047)降低了肾脏(但不是心脏)Apelin mRNA的表达,而肾脏和心脏ACE2(P <0.05)和INOS(p = 0.043)mRNA表达显着增加了。这些作用在很大程度上被RIPERC逆转。结论:我们的结果表明,RIPERC可以保护心脏免受肾脏缺血 - 再灌注损伤,这可能是通过Apelin与RAS/Inos途径的相互作用。
Precision 3D打印技术和材料的进步具有戏剧性的改进的原型制作技术,从而使生物医学平台的世界广泛更快,更有效。[1]微分辨率3D打印机可以通过使用微铣削技术来制造高度复杂的质量可实现部分,而功能不可能提高。[2]因此,微尺度3D打印技术在生物医学领域中用于开发简单有效的透射药物输送平台(包括微针(MNS)),最近由于克服了克服传统MN的几何局限而引起了人们的注意。[3]由微米尺度聚合物针制成的可溶解的MN斑块是一种患者友好型的透皮药物输送系统,能够以最小的侵入性将活性化合物延伸到皮肤中。[4]然而,由于其锥形几何形状,常规MN并不能完全穿透皮肤,从而导致负载货物的递送精度较低,[5]对它们在药物领域中的临床应用和商业化产生了负面影响。[6]因此,已经开发出各种MN施加器,箭头微结构,微柱基和多步制造方法,以克服有限的Contectional MN的交付精度。[7]但是,这些方法的制造复杂性限制了它们在制药行业的批量生产和应用。因此,迫切需要开发一个简单且可实现的MN平台,能够准确交付负载的货物。在此,使用数字灯处理(DLP)基于芯片的图3D打印机用于制造一种可在皮肤组织中完全插入和锁定的新型自锁的MN,从而显着提高了Microuse递送精度,从而克服了传统MN的限制。制造简单性和质量增强性主要是在自我锁定的MN发展过程中主要集中在一个高度精确的透皮药物输送平台上。简而
https://inmodemd.com/technologies/technologies-fractora/ 8. Thomas WW, Bloom JD。颈部塑形和下颌脂肪治疗。J Drugs Dermatol。2017;16(1):54-57。 9. Cunha KS, Lima F, Cardoso RM。注射脱氧胆酸减少下颌脂肪的疗效和安全性:随机对照试验的系统评价和荟萃分析。Expert Rev Clin Pharmacol。2021;14(3):383-397。 10. InMode Aesthetics。Morpheus8。2022。2022 年 2 月 5 日访问。https://www.inmodemd.co.uk/morpheus8 11. Alexiades M. 微针射频。北美面部整形外科临床。2020;28(1):9-15。12. Dayan E、Rovatti P、Aston S、Chia CT、Rohrich R、Theodorou S。多模式射频应用治疗下脸部和颈部松弛。Plast Reconstr Surg Glob Open。2020;8(8):e2862。13. Demesh D、Cristel RT、Gandhi ND、Kola E、Dayan SH。射频辅助脂肪分解与射频微针治疗面部整形术后过早出现的下颌和颈部松弛。J Cosmet Dermatol。2021;20(1):93-98。14. Lee SJ、Goo JW、Shin J 等人。使用分段微针射频治疗18名韩国患者炎症性寻常痤疮。皮肤病学外科。2012;38(3):400-405。15. Hellman J. 分段射频消融设备治疗寻常痤疮和相关痤疮疤痕的回顾性研究。化妆品皮肤病学应用杂志。2015;5(4):311-316。16. Hellman J. 分段射频消融治疗寻常痤疮和相关痤疮疤痕的长期随访结果。化妆品皮肤病学应用杂志。2016;6(3):100-104。17. Kim ST,Lee KH,Sim HJ,Suh KS,Jang MS。点阵射频微针治疗寻常痤疮。《皮肤病学杂志》。2014;41(7):586-591。18. Shin JU, Lee SH, Jung JY, Lee JH。点阵微针射频装置与点阵二氧化碳激光治疗在痤疮患者中的分割面部比较。《美容激光治疗杂志》。2012;14(5):212-217。19. Juhasz MLW, Cohen JL。微针治疗疤痕:临床医生的最新资讯。《临床美容投资皮肤病学》。2020;13:997-1003。20. Faghihi G, Poostiyan N, Asilian A 等人。分段式微针射频治疗与不加皮下切除术治疗萎缩性面部痤疮疤痕的疗效:一项随机分段式面部临床研究。J Cosmet Dermatol。2017;16(2):223-229。21. An MK、Hong EH、Suh SB、Park EJ、Kim KH。分段式微针射频治疗与局部聚乳酸联合治疗