中性原子系统长期以来一直是复杂量子物理的试验台。最近,量子研究的焦点已从基础科学转向量子计算应用。尽管几种不同的硬件平台已在此方向的能力方面取得了长足进步,但每种平台在扩展系统规模方面都有各自的障碍:无论是物理上的量子比特数,还是时间上的退相干前的代码周期。具体而言,在中性原子系统中,缺乏以比原子退相干快得多的时间尺度无损读取原子状态的能力。通过将中性原子里德堡阵列的几何可重构性和设计的强相互作用与高精细度腔的强光耦合相结合,我们可以构建一种超越其他硬件系统许多限制的新量子架构。在本论文中,我们阐述了将里德堡原子阵列耦合到腔体的情况,讨论了原子物理与量子计算之间的联系,以及使光腔系统比其他当前量子计算机实现更具优势的基本物理原理。然后,我们描述了这种系统的设计、测试和实现。我们的系统同时适应里德堡激发、可重构光镊阵列、选择性原子态寻址和与光腔的强耦合。我们详细讨论了在超高真空中安装这种系统的风险和技术考虑,包括发现一种新的高反射率镜材料失效机制。最后,我们概述了未来的具体步骤,以展示我们系统中的原理验证表面码纠错,为使用中性原子进行容错量子计算铺平道路。
• 任意单量子比特旋转门和相位门,加上某些双量子比特门(如CZ或CNOT)门,组成通用门集。• 单量子比特门需要精确控制原子与电磁波的相互作用;双量子比特门需要精确控制原子与原子之间的相互作用
在本文中,我们预测在原子阵列中存在超固体相,其中所有原子都被激发到它们的里德堡态。我们专注于两个具有相反宇称的里德堡态的系统,其中两个态之间的轨道角动量 l 相差一,即∆ l = 1。在这里,原子对之间的共振偶极-偶极相互作用通常比色散范德华相互作用强得多,后者从二阶偶极-偶极相互作用产生到非共振对势。我们建议使用具有不同主量子数∆ n,0 的两个里德堡态,其中两个里德堡态之间的偶极矩阵元素急剧减小。这使我们能够进入相反的区域,其中范德华相互作用占主导地位并且预计存在超固体,正如我们使用大规模 QMC 模拟所证实的那样。我们研究了各种里德堡态 | nS 1 / 2 ⟩,|在不同的主量子数 n 和 n ′ 下,87 Rb 的 nP J ⟩ 和 | nD J ⟩ 。对于里德堡原子对 | nS 1 / 2 ⟩ 和 | n ′ PJ ⟩ ,对于典型的主量子数,共振偶极-偶极相互作用随 ∆ n 下降得太快。因此,t / V 要么太大,以致我们预期不会存在超固体相,要么太小,以致很难通过实验观察到。对于状态 | nD J ⟩ 和 | n ′ PJ ⟩ ,如果 n = n ′ − 1,我们预测有趣的参数区域。对于相关的主量子数,两个里德堡态在能量上相距不到 10 GHz,从而能够使用最先进的微波技术实现有效耦合。我们进一步通过磁量子数 m J 以及磁场 B 来微调相互作用。我们选择磁场垂直于原子平面,使得原子平面中原子之间的相互作用与相互作用原子对的方向无关。此外,偶极-偶极相互作用取决于磁场 B 的大小,因为它混合了两个里德堡态的精细结构能级,这会影响它们的偶极矩阵元素。额外的限制是 t 和 V 的相对符号,它取决于 m J 。我们仅当 t / V > 0 时才预期系统支持超固体相。最后,我们收敛到状态 | ⟩ = | 60 P 3 / 2 , mj = 3 / 2 ⟩ 和 | ⟩ = | 59 D 3 / 2 ,mj = 3 / 2 ⟩ ,场幅度B = 50 G。这些状态的另一个优势是D态原子对之间的范德华相互作用相对较弱。这使得原子阵列能够有效地激发到| ⟩状态,这是所提出的状态制备的重要组成部分。在正文的图2中,已经讨论了里德堡对| ⟩和| ⟩之间的相互作用包含一个共振非对角项∝1 / R 3 ,它会引起偶极交换并混合两个项,以及对角线贡献1 / R 6 。在短距离处,我们期望额外的贡献(例如非对角交换相互作用 ∝ 1 / R 6 )会对此进行修改。这些项对于我们特定的里德堡对来说很小,但通常不为零。
研究二氧化碳 (CO 2 ) 在改善建筑材料性能和性能方面的潜力。 研究粉煤灰基土聚物作为混凝土修复材料和钢筋混凝土结构的化学、物理和机械性能。 使用 SEM/EDX 映射元素、X 射线衍射 (XRD) 和 X 射线光电子能谱 (XPS) 技术对 OPC 和土聚物修复材料之间界面过渡区的元素分布进行成像。 评估粉煤灰基土聚物修复材料在现场应用中的性能和耐久性。 使用普通波特兰水泥 (OPC) 和土聚物粘合剂的钢筋混凝土结构设计之间的比较。 产品开发:1. 用于混凝土裂缝和剥落修复的土工碱活化溶液 (GAAS)。 2. 使用纳米技术废物进行有效的土聚物-土壤稳定化以供公用事业使用
摘要:电化学混合电容器中的能量储能涉及快速的法拉达反应,例如在电池中观察到的互嵌型机制,或在适当电势下发生在固体电极表面上的氧化还原过程。混合钠离子电化学电容器带来了电容器高功率和电池的高特异能的优势,在这些电池中,活性炭用作关键的电极材料。活性炭中的电荷存储是由吸附过程而不是氧化还原反应引起的,并且是电气双层电容器。具有高表面积和高电导率的相互连接的多孔结构的高级碳材料是有资格获得有效储能的先决条件。
他留下了儿子 Jamey Brown 和妻子 Tina(住在密苏里州德克斯特);姐姐 Betty Dalton(住在密歇根州庞蒂亚克);六个孙辈:Christina Orr(住在德克斯特);Amanda Hopkins(住在阿拉巴马州伯明翰);Laci Eaton(住在德克斯特);Steve Kirkpatrick、Jason Williams 和 Trevor Williams(住在密苏里州伯尼);十六个曾孙辈:Payton Kirkpatrick、Piper Kirkpatrick、Jase Kirkpatrick、Rylee Eaton、Ryan Eaton、Brynlee Pence、Taylor Williams、Jaelyn Williams、Nicholas Williams、Nolan Williams、Nora Williams、Reese Williams、Zayn Williams、Lynnie Williams、Xander Moore 和 Noah Kirkpatrick。
洛斯阿拉莫斯国家实验室是一家采取平权行动/提供平等机会的雇主,由 Triad National Security, LLC 为美国能源部国家核安全局运营,合同编号为 89233218CNA000001。通过批准本文,出版商承认美国政府保留非独占的、免版税的许可,可以为了美国政府的目的出版或复制本文的已发表形式,或允许他人这样做。洛斯阿拉莫斯国家实验室要求出版商将本文注明为在美国能源部的支持下完成的工作。洛斯阿拉莫斯国家实验室坚决支持学术自由和研究人员的发表权利;但是,作为一个机构,实验室并不认可出版物的观点,也不保证其技术上的正确性。
rury 的总体规划清晰地展现了该机构在未来 25 到 30 年内如何发展、成长和演变。一份好的总体规划设想了建筑、开放空间和景观的结构,它们以一种有凝聚力、清晰、有吸引力且令人难忘的方式交织在一起。它并不是对什么应该去哪里的确切规定。相反,该计划建立了一个有序而灵活的框架,将指导所有未来的规划和发展。它还在形式和功能上反映了杜鲁里大学的独特之处。该计划从 4 月份为期一周的设计研讨会开始,广泛听取了杜鲁里和斯普林菲尔德社区的意见,设想了一个既能保留又能增强杜鲁里校园和子孙后代体验的特色的未来。
o 聘请战略与国际商务系助理教授和讲座教授 • 外部大学董事会成员 • 聘用剑桥大学桑德拉道森教授等杰出教授。 董事会和委员会服务(多学科) 1. 《行政科学季刊》编辑委员会成员 2. 《管理学院期刊》编辑委员会成员 3. 《管理学院评论》编辑委员会成员 4. 《战略管理期刊》编辑委员会成员 5. 《组织科学》编辑委员会成员 6. 《管理期刊》编辑委员会成员(已结束服务) 7. 《管理研究期刊》编辑委员会成员 8. 《组织研究》编辑委员会成员 9. 《创新:组织与管理》编辑委员会成员 10. 《组织社会学研究》编辑委员会成员。编辑与 Raghu Guard 和 Arun Kumaraswamy 共同担任《管理研究杂志》特刊:《颠覆时代的管理》特刊 2018 年投稿可访问:https://onlinelibrary.wiley.com/toc/14676486/2018/55/7
F.I.S.D.为学生提供在初中校园选修某些高中学分课程的机会。这些不是高级课程,而是真正的高中学分课程。高中学分课程应非常谨慎地选择,学生应充分了解该课程的工作量会增加,并且与常规学术课程不同。高中学分课程包括数学、世界语言、社会研究和选修课。请参阅本手册中的相应部分。如果学期成绩为“F”,则需要家长/老师联系以确定学生下一学期的安排。如果学生没有以 70 或更高的成绩通过两个学期的课程,他们可能有资格获得平均学期成绩。要获得平均成绩,必须满足以下条件:1.第一学期没有最低成绩要求 2.第二学期成绩不能低于 60 分。