第1阶段的重点是对大阿德莱德地区计划讨论文件的出版,吸收和理解(讨论文件)。讨论文件概述了委员会在2050年及以后建立对大阿德莱德的愿景时的关键领域。它包含重要的预测,趋势和增长分析,在计划该地区的未来时必须考虑。这是一份强大的基于证据的文件,启发了与所有利益相关者以及投资塑造大阿德莱德未来的对话。
摘要 本文介绍了一种非平衡马赫-曾德干涉仪 (MZI) 固有的干涉特性,该干涉仪通过精密制造技术在绝缘体上硅平台上实现。研究深入探讨了自由光谱范围 (FSR) 与非平衡 MZI 各种长度之间的复杂关系。值得注意的是,模拟结果与实验结果的比较显示出了惊人的一致性。 关键词:马赫-曾德干涉仪、光子学、绝缘体上硅、波导 1. 简介 硅光子器件因其吸引人的特性而越来越受欢迎。小尺寸、大折射率对比度和 CMOS 兼容性是硅光子器件的特性之一,这些特性使其成为电信、生物医学等多个行业的首选器件[1]。马赫-曾德干涉仪 (MZI) 是最广泛使用的硅光子器件组件之一。在硅平台上实现的马赫-曾德尔干涉仪是各种应用的关键元件,从电信(用于光子波导开关和光子调制器)到传感和信号处理 [2]、[3]、[4]。MZI 的实用性源于其干涉特性,这是通过在 MZI 的两个臂之间产生相对相移来实现的。这种相移可以通过使用移相器或使 MZI 的两个臂的光路长度不相等来实现。MZI 的两个臂不相等的 MZI 配置称为不平衡 MZI。在本文中,我们展示了一种不平衡 MZI 设计,我们对其进行了建模、模拟和随后的制造。我们研究了几种不平衡 MZI 设计,并分析了这些设备的模拟和实验传输特性。我们阐明了波导建模的过程,并进行了分析以补偿制造变化,并详细介绍了一些数据分析。 2. 材料与方法 2.1 理论 马赫-曾德干涉仪 (MZI) 包括一个分束器和一个光束组合器,它们通过一对波导相互连接,如图 1 所示。MZI 配置包括分束器将波导输入端 (E i ) 的入射光分成波导的臂或分支。随后,光在输出端重新组合成光束
近年来,半导体、电子、光学、MEMS、生物医药等诸多领域对复杂形状的三维结构的需求日益增加。迄今为止,大多数微结构制造工艺源自半导体工艺,例如硅晶片的薄膜加工和厚膜加工1-3。这些过程不可避免地需要曝光过程。曝光工艺由于需要使用特殊的设备,成本较高,并且在材料方面也受到很多限制。因此,不使用曝光工艺的微结构制造技术的研究正在积极开展。代表性例子包括微加工和微电火花加工 (microEDM)1,4 等机械方法。特别是随着相关产业的发展,具有三维形状的微型齿轮零件的需求量也日益增大,而实现此类零件的批量生产是实现工业化的必要条件。通过使用模具的注塑工艺,可以大规模生产微型齿轮部件。注射成型根据成型材料不同分为塑料注射成型和粉末注射成型,而粉末注射成型又根据所用粉末的种类分为MIM(金属注射成型)和CIM(陶瓷注射成型)。目前,塑料齿轮一般采用塑料注塑工艺进行量产,但众所周知的事实是,采用塑料材料制造的微型齿轮零件在刚性和耐久性方面存在着极限。因此,最近正在积极研究使用粉末金属注射成型工艺而非塑料来生产微型齿轮零件。本研究是通过金属注射成型工艺制造微型齿轮状产品的基础研究。目的是利用粉末注射模芯的微细电火花加工来制造微型齿轮状芯。
摘要 :研究了光放大器存在时经典信号对多芯光纤(MCF)中量子密钥分发(QKD)的影响。首先,基于先进的非对称发送或不发送QKD(SNS-QKD)和经典的Bennett–Brassard 1984-QKD(BB84-QKD),提出了QKD与经典信号的长距离同时传输架构,并且可以根据需求调整光放大器之间的段长。然后,基于所提出的架构建立了自发拉曼散射噪声和四波混频噪声的理论模型。接下来,推导了经典信号噪声影响下安全密钥速率的计算模型。最后,实验结果表明,理论模型与实验光子吻合良好,实验与模拟噪声光子之间最大差异小于2.6 dB。仿真结果表明,当经典信号和量子信号在MCF的不同芯层中传输时,非对称SNS-QKD架构的性能优于BB84-QKD架构。
本文档中包含的产品和服务的规格和描述在印刷时是正确的。Integrated Control Technology Limited 保留更改规格或撤回产品的权利,恕不另行通知。未经 Integrated Control Technology Limited 明确书面许可,不得以任何形式或任何方式(电子或机械)复制、复印或传播本文档的任何部分用于任何目的。Protege® 和 Protege® 徽标由 Integrated Control Technology Limited 设计和制造,是 Integrated Control Technology Limited 的注册商标。所有其他品牌或产品名称均为其各自所有者的商标或注册商标。
量子技术让我们能够利用量子力学定律来完成通信、计算、模拟、传感和计量等任务。随着第二次量子革命的进行,我们期望看到第一批新型量子设备凭借其优越的性能取代传统设备。人们强烈要求将量子技术从基础研究转变为可广泛使用的标准。量子通信通过量子密钥分发保证了绝对安全的未来;量子模拟器和计算机可以在几秒钟内完成计算,而世界上最强大的超级计算机则需要几十年的时间;量子技术使先进的医学成像技术成为可能。还可能会出现我们目前无法预料的进一步应用。全球市场已经意识到量子技术的巨大潜力。作为该领域的先驱,Menlo Systems 为这些新挑战提供了商业解决方案。光子学和量子物理学之间的联系是显而易见的。量子模拟和计算使用冷原子和离子作为量子比特,世界各地的实验室都在此类实验中使用光学频率梳和超稳定激光器。量子通信通常依赖于单光子,这些光子由近红外 (-IR) 光谱范围内精确同步的飞秒激光脉冲产生。量子传感和计量需要频率梳和激光技术具有最高的稳定性和准确性。值得一提的是,光学原子钟正在取代国际单位制 (SI) 中秒的当前定义。
量子技术使我们能够利用量子力学定律来进行诸如通信,计算,计算或传感和计量学等任务。随着第二次量子革命的持续,我们希望看到第一个新颖的量子设备因其出色的性能而取代经典的DECECES。从基础研究到广泛可访问的标准有很大的动力来形成量子技术。量子通讯承诺通过量子密钥分布具有绝对安全性的未来;量子模拟器和计算机可以在几秒钟内执行计算,其中世界上最强大的超级武器需要数十年的时间;量子技术实现了高级的成像技术。可能会出现进一步的申请。全球市场已经意识到了量子技术的巨大潜力。Menlo Systems是该领域的先驱,为这些新型挑战提供了商业解决方案。光子学与量子物理学之间的联系很明显。量子模拟和计算在这些类型的实验中使用冷原子和离子作为Qubits,实验室全球使用光学频率梳子和超稳定激光器。量子通信通常依赖于单个光子,这些光子是在近红外(-IR)光谱范围内精确同步飞秒激光脉冲产生的。量子传感和计量学需要频率梳和激光技术的最高稳定性和准确性。和 - 值得突出显示的应用程序 - 正在替换国际单位系统(SI)中第二个定义的光原子时钟。
全职带薪工程实习生,负责支持自主物流信息系统 (ALIS) 项目的工程和计算机编程团队。帮助维护运行 F-35 飞机的实时系统的数据并排除故障。获得的技能:排除数据故障、团队建设、数据完整性、系统工程方法、基本编码技能。