摘要:量子发射器和腔之间的强耦合相互作用为基本量子电动力学提供了原型平台。我们在此展示了亚甲蓝 (MB) 分子在室温下与亚波长等离子体纳米腔模式相干相互作用。实验结果表明,当 MB 分子发生氧化还原反应将其转化为无色亚甲蓝分子时,强耦合可以可逆地打开和关闭。在模拟中,我们展示了第二激发等离子体腔模式和共振发射器之间的强耦合。然而,我们还表明其他失谐模式同时有效地耦合到分子跃迁,产生不寻常的模式光谱偏移和极化子形成级联。这是可能的,因为等离子体粒子尺寸相对较大,导致模式分裂减少。结果为利用强耦合的主动控制的设备应用开辟了巨大的潜力。关键词:多模强耦合、强耦合控制、等离子体纳米腔、极化子形成
中性原子系统长期以来一直是复杂量子物理的试验台。最近,量子研究的焦点已从基础科学转向量子计算应用。尽管几种不同的硬件平台已在此方向的能力方面取得了长足进步,但每种平台在扩展系统规模方面都有各自的障碍:无论是物理上的量子比特数,还是时间上的退相干前的代码周期。具体而言,在中性原子系统中,缺乏以比原子退相干快得多的时间尺度无损读取原子状态的能力。通过将中性原子里德堡阵列的几何可重构性和设计的强相互作用与高精细度腔的强光耦合相结合,我们可以构建一种超越其他硬件系统许多限制的新量子架构。在本论文中,我们阐述了将里德堡原子阵列耦合到腔体的情况,讨论了原子物理与量子计算之间的联系,以及使光腔系统比其他当前量子计算机实现更具优势的基本物理原理。然后,我们描述了这种系统的设计、测试和实现。我们的系统同时适应里德堡激发、可重构光镊阵列、选择性原子态寻址和与光腔的强耦合。我们详细讨论了在超高真空中安装这种系统的风险和技术考虑,包括发现一种新的高反射率镜材料失效机制。最后,我们概述了未来的具体步骤,以展示我们系统中的原理验证表面码纠错,为使用中性原子进行容错量子计算铺平道路。
引言 魔鬼点(DP)和例外点(EP)描述依赖于参数的系统简并性1,2。EP指具有合并特征态的非厄米系统的简并性,在具有增益和损失的系统中很常见,例如宇称时间对称系统3 – 5。DP表示具有两个正交特征态的厄米系统的简并性。与具有增益和损失的EP相比,DP具有更高的实用性,提供了具有可控相移的几何相,并为研究拓扑或量子DP行为引入了新方法6 – 11。因此,处于DP位置的光子结构中的光子在量子信息和量子计算中具有潜在的应用12 – 15。同时,光子结构中的有源发射器对于相干电子 – 光子界面实现量子信息处理至关重要
自发参量下转换 (SPDC) 几十年来一直是探索量子现象及其应用的关键技术。例如,传统的 SPDC 将高能泵浦光子分裂成两个低能光子,是产生纠缠光子对的常用方法。自 SPDC 早期实现以来,研究人员一直想将其推广到更高阶,例如产生纠缠光子三重态。然而,通过单个 SPDC 过程直接生成光子三重态仍然难以实现。在这里,我们使用通量泵浦超导参量腔展示了直接三光子 SPDC,光子三重态在单腔模式下生成或在多个模式之间分裂。在强泵浦下,状态可以非常明亮,通量密度超过每秒每赫兹 60 个光子。观察到的状态是强非高斯的,这对潜在应用具有重要意义。在单模情况下,我们观察到正交电压的三角星形分布,这表明了长期预测的“星态”。观测到的状态表现出强的三阶关联,这与立方哈密顿量产生的状态预期一致。通过以多种模式的和频进行泵浦,我们观察到多种模式之间存在强的三体关联,令人惊讶的是,在没有二阶关联的情况下也是如此。我们进一步分析了辛对称群模式变换下的三阶关联,表明观察到的变换性质可以“指纹化”产生它们的特定立方哈密顿量。观测到的非高斯三阶关联代表了量子光学领域向前迈出的重要一步,可能对微波场的量子通信以及连续变量量子计算产生重大影响。
我们展示了一种在半导体微腔激光器中创建空间局部状态的实验方法。特别是,我们塑造了具有非共振的,脉冲的光泵的准二维微腔激光器的空间增益曲线,以创建由于增益和非线性损耗的平衡而存在的空间局部结构,称为增益拟散的孤子。我们直接探测了这些局部结构的超快形成动力学和衰减,表明它们是在比索秒时尺度上创建的,比激光腔孤子更快的数量级。使用复杂的Ginzburg – Landau模型来重建所有实验观察到的特征和动力学,该模型明确考虑了半导体中的载体密度动力学。
摘要最近,由于在光学超材料,超敏感的等离激元纳米量学学,增强的非线性谐波产生等方面的吸引人的应用,血浆诱导的光学磁化吸引了人们对纳米光子学和等离子间学的研究兴趣。据我们所知,在这里,我们在实验和理论上首次观察到在超薄等离子体型纳米腔内的平面内磁性偶极共振,由二氧化硅涂层的金纳米球二聚体组成,并偶联到金薄膜。结合了多极膨胀和全波数值模拟,我们揭示了磁共振是由围绕球体二聚体和金膜包含的纳米厚的三角形区域循环的位移电流环引起的,从而导致腔隙间隙中的磁场强度极大地增强了磁场强度。在单粒子水平上使用极化分辨的深色场成像和光谱法,我们明确地“可视化”了诱导磁性模式的光谱响应和辐射极化,其特征与电偶极共振截然不同。我们进一步发现,磁共振频率高度取决于腔间隙厚度和纳米圈尺寸,从而可以直接从可见光到近红外区域进行简单的谐振调整,从而为磁共振增强的新途径增强了非线性光学光学和手性光学。
COVID-19疫苗接种后的心脏问题很少。患有心脏病的患者(例如,心肌炎,心心炎)在COVID-19疫苗对药物的反应良好,并快速感觉更好。虽然COVID-19疫苗的严重副作用非常罕见,但病毒的并发症并非如此。疫苗比病毒更安全。获得Covid-19病毒的儿童可能会遇到严重的问题,例如儿童多系统炎症综合症(MIS-C)。
胃肠道 (GI) 疾病是全球疾病负担的重灾区。2019 年,全球 DALY 为 8900 万,占全球 DALY 总量的 3.5%(22.8 亿例),中低收入国家 (LMIC) 的患病率更高 (1)。2018 年,美国因胃肠道症状就诊的门诊量超过 3680 万,其中原发性胃肠道疾病诊断为 4340 万。每年共进行 2220 万次胃肠道内镜检查,诊断出 284844 例新发胃肠道癌症,255407 例死亡 (2)。包括中低收入国家在内的世界其他地区胃肠道疾病负担也日益加重,因为全球 80% 的食管癌来自中低收入国家,且生存率较低 ( 3 )。胃肠道疾病的发病率和死亡率高于其他常见疾病,因此强调了胃肠道疾病给整个医疗保健系统带来的沉重负担。尽管疾病负担很重,但仍有多重挑战阻碍着最佳胃肠道护理的提供。在中低收入国家,往往缺乏内窥镜设备等资源,以及缺乏及时诊断和干预的技能和专家 ( 4 )。在高收入地区,这些挑战包括高昂的成本以及设施和培训的差异 ( 5 )。克服这些挑战需要大量的资源和时间。尽管全球在提高这些技能方面取得了进展,但这种能力仍然滞后。然而,技术创新已被证明是熟练和有效地克服这些挑战的灯塔。人工智能 (AI) 引入医疗保健领域,迅速推动了许多疾病诊断、治疗和预后的创新。多年来,人们一直在研究胃肠病学中的人工智能算法,以实现对胃肠病学诊断程序的自动解读,尽管成功程度各不相同。自 2010 年以来,人工智能已经探索了胃肠病学的多种程序和病理学 ( 6 )。
Los Alamos国家实验室是一项平权行动/均等机会雇主,由Triad National Security,LLC经营,为美国能源部国家核安全管理局根据合同89233218CNA000001运营。通过批准本文,出版商认识到,美国政府保留了不判有限定的免版税许可,以出版或复制已发表的此捐款形式,或者允许其他人出于美国政府的目的。洛斯阿拉莫斯国家实验室要求出版商根据美国能源部主持的工作确定这篇文章。Los Alamos国家实验室强烈支持学术自由和研究人员发表权;但是,作为一个机构,实验室并未认可出版物的观点或保证其技术正确性。
外部腔内波长激光,其特征在于其特殊的时间连贯性和广泛的调谐范围,它是尖端的纤维感应,例如纤维传感,刺激和光谱镜的至关重要的光源。光学通信技术的新兴增长升级了对线宽和广泛调整范围狭窄的激光器的需求,从而促进了外部波长 - 腔内扫描二极管激光及其多样化应用的迅速发展。本文全面地介绍了这些激光器的配置和操作原理,并对其发展状态进行了深入的审查,专门针对那些具有狭窄线宽和较宽调整范围的人。目的是为参与波长激光的开发和应用的研究人员提供宝贵的参考。