心脏重塑是一个两相过程,在临床上表现为人类心脏大小,形状,结构和功能的变化。其主要原因出生而导致心脏超负荷和心脏损伤。心脏重塑在心力衰竭的发展中起着至关重要的作用,尤其是在发生氧化应激和炎症等因素时。关于心脏重塑的发现中已经揭示了几种调查技术。这些技术,心脏磁共振技术和正电子发射断层扫描(PET)方法已证明是有帮助的。许多药理学策略开始通过反向心脏重塑来展示心力衰竭进展的有希望的解决方案。最近发现的事实是,拉米普利通过调节心脏衰竭大鼠模型中激活素A-粉刺素的表达来减弱左心室重塑。
心脏死亡(SCD)仍然是一个紧迫的健康问题,每年全球数十万。遭受SCD的人之间的杂项,从严重的心脏失败到看似健康的人,对有效的风险评估构成了重大挑战。主要依赖左心室的常规风险层次,仅导致植入可植入的心脏逆变剂的适度效率用于预防SCD。回应,艺术智能(AI)对个性化的SCD风险预测和调整预防策略有望为个别患者的独特性专案。机器和深度学习算法具有学习复杂数据和定义的终点之间的复杂非线性模式的能力,并利用这些模式来识别SCD的微妙指标和预测指标,而SCD的预测因素可能不会通过传统的统计分析而明显。但是,尽管AI有可能改善SCD风险层次,但仍需要解决重要的局限性。我们旨在概述SCD的AI预测模型的当前最新图案,重点介绍这些模型在临床实践中的机会,并确定阻碍广泛采用的关键挑战。
抽象的心脏病和机器学习是两个不同的词,其中一个与医学领域有关,另一个与人工智能有关。在医疗中,大多数人都面临着心脏病的问题,机器学习正在发展计算机科学领域。心脏病被称为心脏病,它提供了更多的数据或信息,应收集它以提供患者的报告,并且机器学习还需要用于预测和解决问题的数据。机器学习技术用于预测心脏病的预测,在这种预测中,它以更少的计算时间和更高的准确性来促进其健康。心脏病预测需要大量的数据来预测,在云计算中,我们也有更多数据,并且在云中可用的数据很难分析。因此,我们使用机器学习算法或技术来预测心脏病,并且以相似的方式应用了这些算法或技术来预测或分析云中可用的数据。在本文中,我们将使用称为Backpropagation算法的机器学习算法,后来我们以后使用优化算法。反向传播算法涉及人工神经网络。反向传播是一种方法,用于计算一批数据后每个神经元的误差贡献(在图像识别,多个图像中)。这是由包围优化算法使用的,以调整每个神经元的重量,从而完成该情况的学习过程。机器学习算法和技术用于识别人类风险问题的强度,它可以帮助患者采取安全措施,以挽救患者的生命。关键字:机器学习,云计算,心脏,反向传播,优化
摘要:尽管临床基因治疗取得了初步成功,已有几种产品获批用于临床,数百种产品正处于临床审批的最后阶段,但尚无一种基因治疗方法对心脏有效。本文,我们回顾了过去在几项心脏基因治疗临床试验中获得的经验,这些试验的目的是诱导缺血性心脏的治疗性血管生成,并尝试调节心力衰竭患者的心脏功能。对迄今为止取得的结果进行严格评估表明,心脏基因传递的效率仍然是阻碍成功的一大障碍,但也需要在建立更可靠的大型动物模型、选择更有效的治疗基因、更好地设计临床试验和更深入地了解心脏生物学方面寻求改进。我们还强调了心脏基因治疗发展中未来前景广阔的几个领域。特别是,从使用蛋白质编码 cDNA 进行基因添加研究到使用小 RNA 疗法调节基因表达的转变,以及精准基因编辑的改进,为心肌梗死后的心脏再生和遗传性心肌病的基因校正等应用铺平了道路,而这些应用直到十年前还无法实现。
从毛细血管开始,静脉系统开始,其中包括静脉,静脉和静脉腔。毛细血管在静脉中终止,它们是较小的血管(20 µs),其肌肉壁比小动脉的壁更薄。大量的血液持有静脉(称为电容血管),直径为5 mm。静脉形成上腔和下腔静脉,直径约为30毫米。静脉和静脉腔的壁由内皮,弹性组织,光滑的肌肉和外部结缔组织层组成。在静脉和静脉腔中,弹性组织较少,但是平滑肌纤维更多。
摘要目的:调查医生和医学生之间的互判和内部人士在音频记录中的心脏声音分类,以及预测与参考分类一致的因素。设计:内部和互确定研究。主题:来自挪威和荷兰的17名GPS和八名心脏病专家,来自挪威的八名医学学生。主要结果指标:与参考分类的协议和KAPPA系数的比例和KAPPA系数的比例。结果:所有评估者的内部杂音一致性比例平均为83%,中位KAPPA为0.64(范围K¼0.09 - 0.86),分别为GPS,心脏病学家和医学生的0.65、0.69和0.61。结果:所有杂音的一致性比例为81%,所有评估者的KAPPA中位数为0.67(范围0.29 - 0.90),GPS,CAR-diologists和医学生的比例分别为0.65、0.69和0.51。结果:独特的杂音,超过五年的临床实践和心脏病专业与该协议最密切相关,ORS为2.41(95%CI 1.63 - 3.58),2.19(1.58 - 3.04)和2.53(1.46 - 4.41)。结论:我们观察到了公平但可变的一致性,并参考了心脏杂音,医师的经验和专业以及杂音强度是与一致性最密切相关的因素。
2.5 CorVue 算法与 Merlin.net 患者护理网络 (PCN) 平台配合使用,旨在远程监控兼容 CIED 患者的心力衰竭早期迹象。CorVue 算法从 CIED 收集胸内阻抗数据,并通过移动应用程序 (myMerlinPulse) 将其传输到 Merlin.net PCN 平台。它使用蓝牙和互联网或移动网络连接来生成警报。或者,公司可以提供通过 Wi-Fi、手机或固定电话连接的远程监控单元 (Merlin@Home),而不是使用基于应用程序的智能手机发射器。医疗保健专业人员可以在 Merlin.net PCN 平台上查看设备传输的数据。Merlin.net 和移动发射器的访问权限是 CIED 的一部分,CorVue 算法随 CIED 设备免费提供。
心源性休克 (CS) 是一种高度致命的疾病,是发病率和死亡率的重要原因 (1)。根据美国最近的登记数据,估计每 100,000 例住院患者中约有 408 例因 CS 引起,平均住院死亡率为 37% (2)。无论 CS 患者是否患有糖尿病,都有许多因素导致他们易患高血糖症。炎症反应引起的交感神经刺激、心输出量减少导致的组织灌注不良、应激反应增加、血管加压素给药以及获得性胰岛素抵抗都会导致这种情况下血糖异常 (3)。应激性高血糖 (SIH) 是因急性疾病住院患者的一种暂时性疾病,在疾病消退后可自行缓解 (4)。无论重症患者入院时是否患有糖尿病,SIH 都很常见,并且似乎是疾病严重程度的一个标志 (5)。此外,关于 SIH 与预后的关系也一直存在争议(6,7)。尽管此前已证实应激性高血糖对心血管疾病的预后有害,但目前尚无证据表明应激性高血糖对 CS 患者,尤其是危重患者的预后具有相关性(8)。建议使用根据平均血糖状态进行调整的应激性高血糖比值(SHR)来评估实际血糖水平。先前的一些研究提出,SHR 可作为急性高血糖状态的指标,也可作为危重患者不良结局的预后指标(9-11)。因此,本研究旨在探讨 SIH 对重症监护病房内危重 CS 患者预后的影响,希望临床医生能够警惕危重 CS 患者的应激性高血糖,并能够意识到应激性高血糖可能带来的不良或伴随影响。