心脏死亡(SCD)仍然是一个紧迫的健康问题,每年全球数十万。遭受SCD的人之间的杂项,从严重的心脏失败到看似健康的人,对有效的风险评估构成了重大挑战。主要依赖左心室的常规风险层次,仅导致植入可植入的心脏逆变剂的适度效率用于预防SCD。回应,艺术智能(AI)对个性化的SCD风险预测和调整预防策略有望为个别患者的独特性专案。机器和深度学习算法具有学习复杂数据和定义的终点之间的复杂非线性模式的能力,并利用这些模式来识别SCD的微妙指标和预测指标,而SCD的预测因素可能不会通过传统的统计分析而明显。但是,尽管AI有可能改善SCD风险层次,但仍需要解决重要的局限性。我们旨在概述SCD的AI预测模型的当前最新图案,重点介绍这些模型在临床实践中的机会,并确定阻碍广泛采用的关键挑战。
抽象的心脏病和机器学习是两个不同的词,其中一个与医学领域有关,另一个与人工智能有关。在医疗中,大多数人都面临着心脏病的问题,机器学习正在发展计算机科学领域。心脏病被称为心脏病,它提供了更多的数据或信息,应收集它以提供患者的报告,并且机器学习还需要用于预测和解决问题的数据。机器学习技术用于预测心脏病的预测,在这种预测中,它以更少的计算时间和更高的准确性来促进其健康。心脏病预测需要大量的数据来预测,在云计算中,我们也有更多数据,并且在云中可用的数据很难分析。因此,我们使用机器学习算法或技术来预测心脏病,并且以相似的方式应用了这些算法或技术来预测或分析云中可用的数据。在本文中,我们将使用称为Backpropagation算法的机器学习算法,后来我们以后使用优化算法。反向传播算法涉及人工神经网络。反向传播是一种方法,用于计算一批数据后每个神经元的误差贡献(在图像识别,多个图像中)。这是由包围优化算法使用的,以调整每个神经元的重量,从而完成该情况的学习过程。机器学习算法和技术用于识别人类风险问题的强度,它可以帮助患者采取安全措施,以挽救患者的生命。关键字:机器学习,云计算,心脏,反向传播,优化
脑心脏输液汤(BHI)是一种富含营养的液体培养基,适合种植几种细菌的细菌菌株,例如链球菌,脑膜炎球菌和肺炎球菌,真菌和酵母菌。BHI肉汤。
(被认为是大学)被钦奈(Rajiv Gandhi Salai)的Naac Jeppiaar Nagar获得认可的“ A”等级-600 119
● 补助金 - 提供运营资金以支持心脏病和/或中风领域的研究。 ● 人员奖 - 向在心血管或脑血管研究博士和博士后培训期间表现出色的个人提供工资支持。 ● 新研究员奖 - 向在博士和博士后培训中表现优秀并希望建立自己独立研究事业的新研究员提供工资奖励。 ● 女性人员奖 - 支持在培训阶段(博士)早期和过渡期(博士后)成为独立研究人员期间对女性心脏和大脑健康进行投资的年轻学者。 ● 土著学者人员奖 - 通过支持土著学生攻读研究生,促进土著社区心脏和大脑健康科学的战略增长。 ● 黑人学者人员奖 - 通过支持黑人学生攻读研究生,促进黑人社区心脏和大脑健康科学的战略增长。 ● 心脑影响奖 - 推动研究突破,旨在产生新知识并加速将其转化为行动,帮助患有心脏病、中风和血管性认知障碍 (VCI) 等影响心脏和大脑的疾病的人。 ● 中风临床研究催化剂资助计划 - 提高加拿大临床中风研究的能力,旨在通过临床研究减轻中风负担、预防复发和改善患者预后,从而提高我们对中风的认识并推进中风护理。 ● 主席和教授职位 - 指定的捐赠或合作伙伴关系,提供薪水和基础设施支持,使领先的研究人员能够在加拿大大学开发特定的心脏病和中风研究重点。 ● 女性心脏和/或大脑健康卓越研究网络 - 支持在 2024/2025 竞赛年在加拿大建立两个 (2) 个新的研究网络,致力于女性心脏和/或大脑健康。 ● 先天性心脏病团队资助 - 旨在汇集多机构、跨学科的健康研究团队与多位合作者,创造和调动知识,改善先天性心脏病 (CHD) 患者、他们的家人和护理人员的健康和保健。
3.4外部评估组(EAG)发现了1项研究,评估了Cari Heart对可疑稳定冠状动脉疾病患者的心脏死亡的预后表现(Oikonomou等人。2021)。这项研究是一项模型开发和验证研究,其中包括3,912人患有CTCA来评估稳定的冠状动脉疾病。这项研究的结果表明,比基于传统临床风险因素(吸烟,高胆固醇血症,高血压,糖尿病,公爵指数,高风险斑块特征和上心脂肪组织体积的存在)的风险模型比风险模型更好。EAG还发现了支持冠状动脉炎症与心脏不良事件风险之间联系的研究。委员会同意,根据Oikonomou等人的结果。(2021),Cari Heart可能会改善心脏死亡的风险预测。(2021),Cari Heart可能会改善心脏死亡的风险预测。
欧洲国家的目标是在本世纪中叶之前实现净零CO 2排放。因此,欧洲能源系统,尤其是电力系统必须发生重大变化。脱碳需要越来越多的迁移率和加热部门的电气化,这使电保留在通往净零CO 2排放的路径上的核心作用。但是,要满足排放靶标,电力供应必须起源于低排放的产生来源。根据Tyndp 2018的情况,预计欧洲的电力供应将主要来自可再生能源转换器,从而引入了能源系统的新挑战。由于可再生能源的季节性,包括瑞士在内的大多数欧洲国家都将面临电力系统供应的季节性失衡。根据缺乏电力的国家的国家能源战略,应涵盖其邻国进口供应的短缺。这项研究评估了不同平衡区域和高度可再生能源系统之间的并发赤字和剩余情况。因此,根据已出版的场景,通过分析瑞士及其邻国奥地利,德国,法国和意大利的案件来确定可能的不可行的能量平衡。结果表明,瑞士及其邻国尤其是在冬季,存在同时存在的赤字情况。因此,该分析的结果挑战了当前的能源策略,并旨在达到瑞士和欧洲的净零CO 2排放。
修订的历史记录1。根据BOM -52/2018批准[第3.10.1号决议。],日期为2018年1月13日。2。根据BOM-53/2018批准[第4.4.4.2号决议。],日期为2018年5月19日。3。在BOM -53/2018中修订[第4.5.1号决议。 ],日期为2018年5月19日。 4。 在BOM -55/2018中修改了[第4.13号决议],日期为2018年11月27日。 5。 在BOM中修改-57/2019 [第3.1.4.2号决议],日期为26/04/2019。 6。 在BOM中修改了-59/2019 [第3.2.3.3.8号决议。 ],日期为2019年11月11日。 7。 在BOM-63/2021中修订[第4.3.1.2号决议。 ],[决议号4.3.1.3。] 日期为17/02/2021。 8。 在AC-41/2021中进行了修订[决议号 3.5];日期为27/08/2021。 9。 AC-42/2022中的修订[决议号 4.1],[决议号 10.4.i&ii]。在BOM -53/2018中修订[第4.5.1号决议。],日期为2018年5月19日。4。在BOM -55/2018中修改了[第4.13号决议],日期为2018年11月27日。5。在BOM中修改-57/2019 [第3.1.4.2号决议],日期为26/04/2019。6。在BOM中修改了-59/2019 [第3.2.3.3.8号决议。],日期为2019年11月11日。7。在BOM-63/2021中修订[第4.3.1.2号决议。],[决议号4.3.1.3。]日期为17/02/2021。8。在AC-41/2021中进行了修订[决议号3.5];日期为27/08/2021。9。AC-42/2022中的修订[决议号4.1],[决议号10.4.i&ii]。