1 印第安纳医学院儿科、解剖学、医学和分子遗传学系 Herman B Wells 儿科研究中心,美国印第安纳州印第安纳波利斯 46202 2 印第安纳大学基因组学和生物信息学中心,美国布卢明顿 3 劳伦斯伯克利国家实验室环境基因组学和系统生物学部,美国加利福尼亚州伯克利 94720 4 加利福尼亚大学比较生物化学项目,美国加利福尼亚州伯克利 94720。 5 美国能源部联合基因组研究所,劳伦斯伯克利国家实验室,美国加利福尼亚州伯克利 94720 6 伯尔尼大学生物医学研究系 (DBMR),瑞士伯尔尼 7 伯尔尼大学医院心脏病学系,瑞士伯尔尼
脑心脏输液汤(BHI)是一种富含营养的液体培养基,适合种植几种细菌的细菌菌株,例如链球菌,脑膜炎球菌和肺炎球菌,真菌和酵母菌。BHI肉汤。
朱利安·科尼格 1,2 |比尔吉特·阿布勒 3 |英格丽德·阿加茨 4,5,6 |托比约恩·阿克施泰特 7,8 |奥勒·安德烈亚斯森 4,9 |米娅·安东尼 10 |卡尔·尤尔根·贝尔 11 |卡佳·伯茨 12 |丽贝卡·C·布朗 13 |罗穆亚尔德·布伦纳 14 |卢卡嘉年华 15 |雨果·D·克里奇利 16 |凯瑟琳·R·卡伦 17 | Geus 18 的 Eco JC |十字架的费利伯特 11 |伊莎贝尔·吉奥贝克 19 |马克·D·费格 3 |哈坎·菲舍尔 20 |赫塔弗洛尔 21 |迈克尔·盖布勒 22,23 |彼得·J·吉安罗斯 24 | Melita J. Giummarra 25.26 |史蒂文·G·格林宁 27 |西蒙·根德尔曼 28 |詹姆斯·AJ·希瑟斯 29 |萨宾·J·赫珀茨 12 | Mandy X. 至 30 |塞巴斯蒂安·延奇克 31,32 |迈克尔·凯斯 1.33 |托拜厄斯·考夫曼 4.9 | Bonnie Klimes-Dougan 34 |斯特凡·科尔施 31.35 |玛琳·克劳奇 12 |丹尼斯·库姆拉尔 22.23 | Femke Lamers 30 |李泰浩 36 |马茨·亚历山大 7.8 |凤林10 |马丁洛策 37 |埃琳娜·马科瓦茨 38.39 |马泰奥·曼奇尼 40.41 |福尔克·曼克 12 | Kristoffer NT 价格 20,42 |斯蒂芬·B·马努克 24 |玛拉·马瑟 43 |弗朗西斯·米滕 44 |闵正元 45 |布莱恩·穆勒 17 |薇拉·穆恩奇 13 |弗劳克·尼斯 21.46 |林雅 45 |古斯塔夫·尼尔松内 8,20 |丹妮拉·奥尔多涅斯·阿库纳 31 |贝尔热·奥斯内斯 35.47 |克里斯蒂娜·奥塔维亚尼 39.48 |布伦达 WJH 彭尼克斯 30 |艾莉森·庞齐奥 45 |戈文达·R·普德尔 49 |詹尼斯·雷内尔特 22 |平忍10 |榊道子 50.51 |安迪舒曼 11 |林索伦森 35 |卡尔斯滕·施佩希特 35.52 |乔安娜·施特劳布 13 |桑德拉·塔姆 8,20,53 |米歇尔泰国 17 |朱利安·F·塞耶 54 |本杰明·乌巴尼 55 |丹尼斯·范德米 18 |劳拉·S·范维尔岑 56.57.58 |卡洛斯·文图拉-博特 59 |阿诺·维尔林格 22,23 |大卫·沃森 60 |魏鲁清 61 |朱莉娅·温特 59 |梅琳达·韦斯特伦德·施莱纳 34 |拉尔斯·T·韦斯特莱 4,9,62 |马蒂亚斯·威玛 59.63 |托拜厄斯·温克尔曼 21 |吴国荣 61 |刘贤珠 45 |丹尼尔·S·金塔纳 4.9
评估心脏骤停后昏迷患者的神经功能完整性仍是一个悬而未决的挑战。昏迷结果的预测主要依赖于专家对生理信号的视觉评分,这种方法容易产生主观性,并使相当多的患者处于预后不确定的“灰色地带”。对听觉刺激后脑电图反应的定量分析可以让我们了解昏迷时的神经功能以及患者苏醒的机会。然而,由于协议繁琐多样,标准化听觉刺激后的反应还远未在临床常规中使用。在这里,我们假设卷积神经网络可以帮助提取昏迷第一天对听觉刺激的脑电图反应的可解释模式,这些模式可以预测患者苏醒的机会和 3 个月后的存活率。我们使用卷积神经网络 (CNN) 对多中心和多方案患者队列中在标准化镇静和目标体温管理下昏迷第一天对听觉刺激的单次脑电图反应进行建模,并预测 3 个月时的结果。对于接受治疗性低温和常温的患者,使用 CNN 预测觉醒的阳性预测率分别为 0.83 ± 0.04 和 0.81 ± 0.06,预测结果的曲线下面积分别为 0.69 ± 0.05 和 0.70 ± 0.05。这些结果也持续存在于处于临床“灰色地带”的一部分患者中。网络预测结果的可信度基于可解释的特征:它与脑电图反应的神经同步性和复杂性密切相关,并受到独立临床评估的调节,例如脑电图反应性、背景爆发抑制或运动反应。我们的研究结果强调了可解释的深度学习算法与听觉刺激相结合在改善昏迷结果预测方面的巨大潜力。
从毛细血管开始,静脉系统开始,其中包括静脉,静脉和静脉腔。毛细血管在静脉中终止,它们是较小的血管(20 µs),其肌肉壁比小动脉的壁更薄。大量的血液持有静脉(称为电容血管),直径为5 mm。静脉形成上腔和下腔静脉,直径约为30毫米。静脉和静脉腔的壁由内皮,弹性组织,光滑的肌肉和外部结缔组织层组成。在静脉和静脉腔中,弹性组织较少,但是平滑肌纤维更多。
心源性休克 (CS) 是一种高度致命的疾病,是发病率和死亡率的重要原因 (1)。根据美国最近的登记数据,估计每 100,000 例住院患者中约有 408 例因 CS 引起,平均住院死亡率为 37% (2)。无论 CS 患者是否患有糖尿病,都有许多因素导致他们易患高血糖症。炎症反应引起的交感神经刺激、心输出量减少导致的组织灌注不良、应激反应增加、血管加压素给药以及获得性胰岛素抵抗都会导致这种情况下血糖异常 (3)。应激性高血糖 (SIH) 是因急性疾病住院患者的一种暂时性疾病,在疾病消退后可自行缓解 (4)。无论重症患者入院时是否患有糖尿病,SIH 都很常见,并且似乎是疾病严重程度的一个标志 (5)。此外,关于 SIH 与预后的关系也一直存在争议(6,7)。尽管此前已证实应激性高血糖对心血管疾病的预后有害,但目前尚无证据表明应激性高血糖对 CS 患者,尤其是危重患者的预后具有相关性(8)。建议使用根据平均血糖状态进行调整的应激性高血糖比值(SHR)来评估实际血糖水平。先前的一些研究提出,SHR 可作为急性高血糖状态的指标,也可作为危重患者不良结局的预后指标(9-11)。因此,本研究旨在探讨 SIH 对重症监护病房内危重 CS 患者预后的影响,希望临床医生能够警惕危重 CS 患者的应激性高血糖,并能够意识到应激性高血糖可能带来的不良或伴随影响。
心脏重塑是一个两相过程,在临床上表现为人类心脏大小,形状,结构和功能的变化。其主要原因出生而导致心脏超负荷和心脏损伤。心脏重塑在心力衰竭的发展中起着至关重要的作用,尤其是在发生氧化应激和炎症等因素时。关于心脏重塑的发现中已经揭示了几种调查技术。这些技术,心脏磁共振技术和正电子发射断层扫描(PET)方法已证明是有帮助的。许多药理学策略开始通过反向心脏重塑来展示心力衰竭进展的有希望的解决方案。最近发现的事实是,拉米普利通过调节心脏衰竭大鼠模型中激活素A-粉刺素的表达来减弱左心室重塑。
摘要:尽管临床基因治疗取得了初步成功,已有几种产品获批用于临床,数百种产品正处于临床审批的最后阶段,但尚无一种基因治疗方法对心脏有效。本文,我们回顾了过去在几项心脏基因治疗临床试验中获得的经验,这些试验的目的是诱导缺血性心脏的治疗性血管生成,并尝试调节心力衰竭患者的心脏功能。对迄今为止取得的结果进行严格评估表明,心脏基因传递的效率仍然是阻碍成功的一大障碍,但也需要在建立更可靠的大型动物模型、选择更有效的治疗基因、更好地设计临床试验和更深入地了解心脏生物学方面寻求改进。我们还强调了心脏基因治疗发展中未来前景广阔的几个领域。特别是,从使用蛋白质编码 cDNA 进行基因添加研究到使用小 RNA 疗法调节基因表达的转变,以及精准基因编辑的改进,为心肌梗死后的心脏再生和遗传性心肌病的基因校正等应用铺平了道路,而这些应用直到十年前还无法实现。
2.5 CorVue 算法与 Merlin.net 患者护理网络 (PCN) 平台配合使用,旨在远程监控兼容 CIED 患者的心力衰竭早期迹象。CorVue 算法从 CIED 收集胸内阻抗数据,并通过移动应用程序 (myMerlinPulse) 将其传输到 Merlin.net PCN 平台。它使用蓝牙和互联网或移动网络连接来生成警报。或者,公司可以提供通过 Wi-Fi、手机或固定电话连接的远程监控单元 (Merlin@Home),而不是使用基于应用程序的智能手机发射器。医疗保健专业人员可以在 Merlin.net PCN 平台上查看设备传输的数据。Merlin.net 和移动发射器的访问权限是 CIED 的一部分,CorVue 算法随 CIED 设备免费提供。
