Ti3C2 和 Ti3C2X2 (X= F, OH) 单层的性能和锂存储能力。美国化学会志 134 , 16909-16916 (2012)。36 . Toyoura, K., Koyama, Y., Kuwabara, A., Oba, F. 和 Tanaka, I. 锂原子化学扩散的第一性原理方法
读经计划 __ 创世记 __ 出埃及记 __ 利未记 __ 民数记 __ 申命记 __ 约书亚记 __ 士师记 __ 路得记 __ 撒母耳记上 __ 撒母耳记下 __ 列王记上 __ 列王记下 __ 历代志上 __ 历代志下 __ 以斯拉记 __ 尼希米记 __ 以斯帖记 __ 约伯记 __ 诗篇 __ 箴言 __ 传道书 __ 雅歌 __ 以赛亚书 __ 耶利米书 __ 耶利米哀歌 __ 以西结书 __ 但以理书 __ 何西阿书 __ 约珥书 __ 阿摩司书 __ 俄巴底亚书 __ 约拿书 __ 弥迦书 __ 那鸿书 __ 哈巴谷书 __ 西番雅书 __ 哈该书 __ 撒迦利亚书 __ 玛拉基书
时序基准发生器是一个 8 级递增计数器 , 可以精确的产生时基。看门狗 ( WDT )是由一个 时基发生器和一个 2 级计数器组成,它可以在主控制器 或其它子系统处于异常状态时产生中断。 WDT 计数溢出时产生一个溢出标 志,此标志可以通过命令输出到 /IRQ 脚 ( 开漏输出 ) 。时序基准发生器和 WDT 时钟的来源。时基和看门狗共用 1 个时钟源,可配置 8 种频率: f WDT = f sys/2 n ( n=0~7 )
在人工智能发展史上,2016年被普遍视为具有里程碑意义的一年,人工智能项目数量大幅增加(赵建军、袁志强,2016)。这一年,DeepMind 的 AlphaGo 战胜了围棋冠军李世石,成为首个战胜职业围棋选手的计算机围棋系统。这场人机大战的结果引起了全球的广泛关注,为人工智能技术的发展注入了新的动力。在各国人工智能战略和资本涌入的推动下,人工智能技术的应用领域得到了极大的拓展,教育是受影响最为显著的领域之一。2017全球(上海)人工智能创新峰会呼吁进一步探索人工智能与教育的融合。在过去几年大数据、互联网、云计算等技术的快速发展中,人工智能在中国教育改革中发挥了至关重要的推动作用(张建军、顾志强,2023)。
熊瑞 2, † , 张雷克 3, † , 李世良 2, † , 孙元 3 , 丁敏一 2 , 王勇 1 , 赵永亮 1 , 吴艳 3 , 尚伟娟 3 , 蒋夏明 3 , 单继伟 2 , 沉子豪 2 , 童一 2 , 徐柳新 2 , 陈宇 1 , 英乐刘 1 , 邹刚 4 , Dimitri Lavillete 4 , 赵振江 2 , 王锐 2 , 朱丽丽 2 , 肖耕夫 3 , 兰柯 1 , 李洪林 2,* , 徐克 1,4,* 1 武汉大学生命科学学院病毒学国家重点实验室,
Stemansy旨在检测数字媒体中的隐藏消息,在信息安全领域提出重大挑战。本文介绍了一种对抗性的切解系统,该系统利用对抗性训练和有效的有效网络的功能提取功能。我们利用有效网络从图像中提取可靠的特征,随后由密集的神经网络对其进行分类,以区分隐志和非稳定摄影含量。为了增强系统对对抗性攻击的弹性,我们实施了一个自定义的对抗训练环,该训练循环使用快速梯度符号方法(FGSM)生成对抗性示例,并将这些示例集成到培训过程中。我们的结果表明,所提出的系统不仅可以在检测隐志含量方面具有很高的准确性,而且还保持了对抗性扰动的鲁棒性。利用最先进的深度学习体系结构和对抗性训练的双重方法为稳固性领域提供了重大进步,从而确保了对数字图像中隐藏信息的更可靠检测。
• 王新月、侯少辉、张莉、李琳玲、梁振、张志国和黄干。实时 eeg 锁相反馈控制用于 alpha 幅度和频率调节:openbci 实现。2020 年第九届生物信息学和生物医学科学国际会议,第 65-70 页,2020 年
完整作者列表: 姜静;电子科技大学;休斯顿大学 朱航天;休斯顿大学 牛毅;电子科技大学 朱青;休斯顿大学 宋少伟;休斯顿大学 周婷;电子科技大学;休斯顿大学 王超;电子科技大学 任志锋;休斯顿大学
程明 1 宋勇 1 陈毓涵 2,* 1 海军指挥学院海战模拟中心,南京 2 中国电子科技集团公司第28研究所,南京 * 通讯作者 摘要:针对任务规划系统开发的需求,对国内外各个层次的任务规划系统的主要功能和应用环境、工作方式、内容、部署方式等进行了研究和分析。最后,从系统开发和应用环境出发,提出了任务规划系统的开发方法。指出任务规划系统的验证方法可分为硬件验证、软件测试和系统级测试。这些方法为任务规划系统的开发提供了参考。
科学委员会 Sergey Alekseenko,库塔特拉泽研究所俄罗斯热物理学系 Derek Baker,土耳其中东技术大学 Ryszard Białecki,波兰西里西亚理工大学 Camilo Bulnes,墨西哥国立自治大学 Bassam Dally,沙特阿拉伯阿卜杜拉国王科技大学 Kyle Daun,加拿大滑铁卢大学 Pradip Dutta,印度科学研究所 Pedro Coelho,葡萄牙里斯本高等技术学院 Renata Cotta,巴西里约热内卢联邦大学 Michael Epstein,以色列特拉维夫大学 Timothy Fisher,美国加州大学洛杉矶分校 Francis Franca,巴西南里奥格兰德联邦大学 Iskender Gökalp,土耳其技术与创新委员会 Kamel Hooman,荷兰代尔夫特理工大学 John R. Howell,美国德克萨斯大学奥斯汀分校 Nikolay Ivanov,俄罗斯圣彼得堡理工大学 James Klausner,美国密歇根州立大学Atsuki Komiya,日本东北大学 Wojciech Lipiński,塞浦路斯研究所,塞浦路斯 Fengshan Liu,加拿大国家研究委员会,加拿大 Peter Loutzenhiser,美国佐治亚理工学院 Christos Markides,英国伦敦帝国理工学院 M. Pinar Mengüç,土耳其厄齐因大学 Michael F. Modest,美国加州大学默塞德分校 Tuba Okutucu-Özyurt,土耳其国际电信联盟能源研究所 Mike Owen,南非斯泰伦博斯大学 Nesrin Özalp,美国伊利诺伊州立大学 Jaona Randrianalisoa,法国兰斯大学 Martin Roeb,德国航空航天中心,德国 Gary Rosengarten,澳大利亚皇家墨尔本理工大学 帅勇,哈尔滨工业大学,中国 Terrence Simon,美国明尼苏达大学 Janusz Szmyd,波兰克拉科夫 AGH 大学 陶文泉,西安交通大学,中国 Felipe托雷斯,澳大利亚国立大学,澳大利亚 王志华,新加坡国立大学,新加坡 王秋旺,西安交通大学,中国 俞子涛,浙江大学,中国 张星,清华大学,中国 摘要截止日期 意向书截止日期为 2024 年 9 月 1 日 2 页摘要截止日期为 2024 年 10 月 1 日 入选投稿人将被邀请向 ASME《传热传质杂志》未来的特别专题提交全文论文。