案例报告。一名10岁的非洲裔美国男孩患有自闭症疾病(DSM-IV标准)于2002年被送往儿童精神病学住院单位,作为危机干预措施,以稳定他的众多行为问题。患者的行为的特征是不断的烦躁,躁动,踢,咬和吐痰。他还扔东西并试图逃跑。开始使用利培酮和可乐帕姆(Clonaze-Pam)进行治疗,但他吐出了他的药物。鉴于患者的行为问题升级,肌肉内氟哌啶醇和Lorazepam是在需要的基础上尝试的。 在1至2天内进行了2次注射卤代醇(5 mg)和劳拉西m(2 mg)后,患者患有肌张力蛋白反应,并用二羟胺治疗。 然而,在患者接受了4剂量的4剂量后,氟哌啶醇(总计20 mg)和劳拉西m(总计8 mg)在2天内通过肌内注射(总计8 mg),他出现了NMS的迹象和症状,包括发烧,快速性,速度,速度,白细胞计数,升高的白细胞计数,肌酸级别(CK)升高至8000 upy升高。 将患者转移到小儿重症监护病房,并通过停止氟哌啶醇并开始静脉内补水和镇静作用来适当治疗。 在其CK水平后,症状被转移回了精神病学单位,显示出向下趋势,已降至2000 U/L。 然而,以侵略性,随地吐痰和扔东西的形式的行为问题继续进行,患者也不断烦躁不安。鉴于患者的行为问题升级,肌肉内氟哌啶醇和Lorazepam是在需要的基础上尝试的。在1至2天内进行了2次注射卤代醇(5 mg)和劳拉西m(2 mg)后,患者患有肌张力蛋白反应,并用二羟胺治疗。然而,在患者接受了4剂量的4剂量后,氟哌啶醇(总计20 mg)和劳拉西m(总计8 mg)在2天内通过肌内注射(总计8 mg),他出现了NMS的迹象和症状,包括发烧,快速性,速度,速度,白细胞计数,升高的白细胞计数,肌酸级别(CK)升高至8000 upy升高。将患者转移到小儿重症监护病房,并通过停止氟哌啶醇并开始静脉内补水和镇静作用来适当治疗。在其CK水平后,症状被转移回了精神病学单位,显示出向下趋势,已降至2000 U/L。然而,以侵略性,随地吐痰和扔东西的形式的行为问题继续进行,患者也不断烦躁不安。在此阶段,考虑了哌醋甲酯的试验,希望减少患者的躁动和烦躁。他收到了第一个也是唯一的甲化甲酯,5毫克的剂量后,他被认为相对平静且不那么烦躁。然而,患者随后发烧,他的CK水平从哌醋甲酯给药时的690 U/L增加到甲基化甲酯给药后5小时5小时。在此期间,患者没有受到搅动,也没有受到约束,并且没有肌肉注射可以解释CK水平的升高。在给药后一天,患者的发烧消退,他的CK水平下降到618 U/L,并继续进一步下降。不给予进一步的哌醋甲酯。
CRISPR 是一种非常强大的技术,可以调节基因组中的任何靶基因,具有良好的治疗目的。CRISPR-Cas9 是一种方便的基因操作工具。尽管如此,人类基因编辑,特别是生殖基因的广泛后果尚无法预测。首先,一旦编辑,基因将成为人类后代的一部分,可能无法从人类中消除;其次,成功率无法保证;第三,编辑的保真度,因为它可能会影响不相关的基因或未指定的 DNA 片段;最后但并非最不重要的是,它对基因相互作用、网络和信号通路的影响可能难以预测。CRISPR-Cas9 主要包括精确的基因组编辑、快速性和成本效益、疾病模型的创建、基因功能的研究、基因治疗和转化研究中的应用以及物种的广泛多样性。该技术还引发了科学界的道德和伦理担忧。美国国立卫生研究院 (NIH) 要求对人类细胞中的基因修饰进行伦理和安全批准。 NIH 目前不资助人类胚胎中 CRISPR 的研究,并反对在生殖细胞中使用 CRISPR,因为这些改变将是永久性的和可遗传的。该技术有望对癌症治疗产生最深远的影响。基于 CRISPR 的技术的最新进展正在重新定义癌症的研究方式,并有可能改善抗癌疗法。改进该技术的一种方法是使用机器学习方法来理解 CRISPR 错误并预测更具体的编辑和修复结果。
尽管机器学习在许多应用上的表现超过了人类水平,但大脑学习能力的普遍性、稳健性和快速性仍然无与伦比。认知如何从神经活动中产生是神经科学的核心未解问题,与智能研究本身密不可分。Papadimitriou 等人(2020 年)提出了一种简单的神经活动形式模型,随后通过数学证明和模拟表明,该模型能够通过创建和操纵神经元组合来实现某些简单的认知操作。然而,许多智能行为依赖于识别、存储和操纵刺激的时间序列的能力(计划、语言、导航,仅列举其中几项)。我们在这里表明,在同一个模型中,时间可以通过突触权重和可塑性自然地作为优先顺序捕获,因此,可以对组合序列进行一系列计算。具体来说,重复呈现一系列刺激会导致通过相应的神经组件记住该序列:将来呈现序列中的任何刺激时,相应的组件及其后续组件将一个接一个地被激活,直到序列结束。如果同时向两个大脑区域呈现刺激序列,则会创建一个支架表示,从而导致更高效的记忆和回忆,这与认知实验一致。最后,我们表明,任何有限状态机都可以通过呈现适当的序列模式以类似的方式学习。通过扩展这种机制,可以证明该模型具有通用计算能力。我们通过一系列实验支持我们的分析,以关键方式探索该模型学习的极限。总之,这些结果为大脑非凡的计算和学习能力的基础提供了一个具体的假设,其中序列起着至关重要的作用。关键词:组件、神经网络、神经科学、可塑性、序列学习、有限状态机
背景:自动驾驶(AD)的安全仍然是其广泛采用的障碍,这是最近事件证明的。诸如复杂环境,不断发展的技术以及转移监管和客户需求等因素需要持续监视和改进广告软件。这是一个可能有利于DevOps支持的软件和系统工程的过程。迭代DEVOPS流程至关重要,有两个目的:通过持续改进功能并为及时响应未知的错误或事件提供框架来满足客户需求。但是,该软件的任何更新都必须遵循标准,法规或行业最新状态规定的严格安全过程。将这些安全活动纳入DevOps形成了一个称为DevSafeops的迭代过程。这些必要的活动,尽管对安全性至关重要,但固有地导致迅速妥协。研究目标:在这项工作中,我们最初确定了AD开发中快速DevSafeops的挑战,然后探索现有的解决方案。随后,我们提出了两种加速AD开发中主要活动的方法,即需求工程和安全分析。方法:为了解决每个研究目标,使用了各种研究方法。进行了访谈研究和系统的文献综述,以确定挑战和研究差距。然后,为拟议方法采用了设计科学,访谈研究和案例研究。结果:最初,确定了与AD安全性的每个基本活动相关的挑战和研究差距(论文A和B)。文献中提出的解决方案已确定并映射到挑战(论文B)。然后,提出了两种用于安全分析的快速性的方法,这是开发的第一步。我们适应系统理论过程分析(STPA),用于汽车系统工程中的分布式开发,
在本研究中,使用了能够选择性地与被荧光染色的单链目标DNA(荧光DNA)结合的单链DNA修饰的2种大小和材质不同的探针粒子(金纳米粒子,Probe1;聚苯乙烯微粒,Probe2),尝试通过用激光照射含有这些粒子的溶液,利用光的力量(光诱导力)以及由该力引起的光诱导对流,使目标DNA和探针粒子局部集中,从而加速DNA双链的形成。结果发现,经过5分钟的光照,探针1和2的凝集物形成约数十μm大小,荧光DNA被聚集并捕获在凝集物的间隙中。还发现,与探针颗粒表面的DNA牢固结合的互补碱基序列(匹配DNA)越强,发出的荧光信号就越强(图2左)。特别地,本研究中使用的微粒经历了“米氏散射”,即当微粒的尺寸与激光波长相当时,光会发生强烈散射的现象。这种增加的光功率可用于提高浓缩效率。此外,由于光力增加时组装体变得更加稳定,因此人们认为可以实现迄今为止难以实现的固液界面光诱导双链形成的加速。通过利用该机制,我们实现了 7.37 fg/μL 的检测限,成功以比传统数字 PCR 方法(检测限:约 200 fg/μL)高一到两个数量级的灵敏度检测 DNA(图 2,右)。通常情况下,由于互补 DNA 分子之间碰撞的概率较低,在如此稀释的 DNA 溶液中形成双链需要很长时间。异探针光学浓缩法对 DNA 的检测之所以具有高灵敏度和快速性,被认为是由于通过显著增加聚集体内的局部 DNA 浓度,加速了这些极少量 DNA 双链的形成。此外,我们证明了通过用光照射金纳米粒子并利用产生的光的热量(光热效应)来松散双链键并增加键断裂的概率,来自聚集体的荧光信号表现出极高的碱基序列特异性,从而能够清楚地检测和识别24个碱基长的目标DNA中仅含有单个碱基的突变,包括位置依赖性(图3)。仅使用聚苯乙烯(Probe2)的情况,在所用激光的波长(1064nm)下几乎没有光热效应,因为与探针是同一类型,所以称为“同源探针”,否则称为异源探针。
摘要 多年来,企业开展日常业务活动的方式逐渐发生变化。许多人已经偏离了最初的旧方法,将人工智能作为获得竞争优势的手段。本文旨在评估将人工智能整合为一种商业战略的有效性,具有成本效益,一旦制定了计划,效率更高,还有助于有效的业务管理。它还接管了重复和危险的任务。但是,它缺乏开箱即用的思维,这意味着它有时只能在特定目标的范围内运作。当需要在业务中做出关键业务决策时,这反过来可能是一个负面方面。在需要解决某些客户投诉时,它也缺乏情感,这可能会带来客户不满。关键词:人工智能、营销、物联网、日本 DOI:10.7176/JMCR/74-02 出版日期:2020 年 12 月 31 日 1.0 简介 人工智能 (AI) 技术在理论上能够成为未来商业和军事能力中必不可少的力量倍增器。全球各地的各种企业都承认人工智能对于提高竞争优势至关重要。因此,企业正在向人工智能基础设施投入大量资金。人工智能既有好处也有坏处。本文的第一部分包含研究背景。第二部分包括对人工智能文献的批判性评论,而第 3 节和第 4 节则介绍了研究结果和结论。1.1 研究背景 人工智能的应用通常用于在决策或解决问题时模仿人类智能。人工智能技术具有稳定性、可靠性、成本效益和竞争力的优势,同时能够处理问题解决或决策的复杂性和快速性。人工智能已应用于众多领域,包括工程、制造、医学、经济学、语言学和法律,以及各种建模、预测和系统支持和管理应用(Mellit & Kalogirou,2008 年)。互联网中人工智能的使用,例如搜索引擎,被认为是其最有前途的发展(Mellit & Kalogirou,2008 年;Russell & Norvig,2003 年)。虽然人工智能像任何其他应用程序一样具有显着的效率,但它们的功能和能力都有限。在人类智能仅限于特定个人或少数特定人员的机构中,人工智能技术往往提供稳定性,从而防止人员退休或离开机构时技能和专业知识的流失(Russell & Norvig,2003)。这意味着借助人工智能,组织能够在整个生命周期中保留专业知识和技能。只要相应的问题和决策参数保持不变,人工智能框架中包含的专业知识的寿命就会受到约束。人工智能能够提高学习能力,可以利用这种能力进一步延长应用程序的寿命和重要性。考虑到现实世界的最佳性能和故障,人工智能工具非常有用,因为它们通过增加其在实际应用中的使用来提高软件效率(Russell & Norvig,2003)。
目前,纳米 / 微粒子被广泛应用于各个领域 [1-3]。银粒子由于其独特的光学-物理-化学性质,是各类粒子中最为重要的材料之一。该材料已被提议用于各个领域,如生物传感器、诊断、成像、催化剂、太阳能电池和抗菌 [4-14]。特别是,与尺寸相关的独特等离子体特性使粒子在生物医学应用方面表现出色 [15-20]。鉴于银材料的重要性,第一版《银纳米 / 微粒子:改性与应用》于去年成功出版,其中收录了 10 篇优秀论文 [21-30]。该特刊 2.0 版还提供了详细介绍银材料合成、改性和应用的原创贡献。其中收录了 11 篇优秀论文,描述了银纳米 / 微粒子领域最新进展的示例。由于银纳米粒子具有非破坏性、快速性、分子指纹识别和超灵敏及光稳定性等特性,其等离子体特性已被应用于基于表面增强拉曼散射 (SERS) 的有害物质检测 [31]。由于食用海鲜相关的组胺中毒会导致疾病,Kim-Hung 等人报道了使用等离子体银-金纳米结构通过 SERS 轻松检测组胺 [32]。他们使用该纳米结构通过 SERS 成功检测出组胺(LOD 为 3.698 ppm)。Pham 等人报道了使用含有纳米结构的内部标准基于 SERS 对农药进行灵敏和定量检测 [33]。在研究中,4-巯基苯甲酸标记的银-金纳米粒子用于灵敏和定量的福美双检测,检测范围为 240 至 2400 ppb,检测限为 72 ppb。银纳米粒子作为抗菌剂具有巨大潜力。Nakamura 等人综述了银纳米粒子的合成及其在预防感染方面的应用[34]。他们特别关注了环境友好型合成和抑制医护人员的感染。Nakamura 等人报道,紫外线照射可通过羟基自由基增强银纳米粒子的杀菌活性[35]。他们表明,紫外线照射银纳米粒子可有效增强其杀菌活性,这是因为银纳米粒子经紫外线照射后会产生活性羟基自由基,而这种活性羟基自由基具有抗菌活性。紫外线照射可快速增强银纳米粒子中活性羟基自由基的产生。银纳米线具有优异的导电性能,在热能和电子应用方面得到了深入研究。Mori 等人评估了银纳米线及其与碳纳米管复合材料在生物医学应用中的抗菌和细胞毒性特性[36]。Li 等人报道了一种简单、可持续且环境友好的方法,即通过自牺牲还原在竹子上装饰的介孔 TiO 2 薄膜中原位制造银纳米粒子,以合成具有高效抗真菌活性的纳米复合材料[37]。复合薄膜赋予的竹子对绿色木霉和柑橘假单胞菌表现出优异的抗真菌活性。由于复合薄膜具有高生物相容性、低成本和易于制造的特点,因此在竹子上原位制造银纳米粒子是一种可行的方法。