量子信息可以通过离散系统(例如旋转或连续系统)作为高斯州携带。离散情况下的量子代码通过一般的“稳定器”框架很好地研究了。从离散的耐偏移代码开始,Gottesman,Kitaev和Preskill为连续变量描述的系统构建了量子代码[2]。代码单词是无限挤压状态的叠加,这是正交平面中δ函数的2D网格。实际上,人们与有限的挤压合作。代码,| GKP⟩状态是通过宽度宽度函数宽度Δ -1的高斯函数的高斯函数的叠加来描述的。这是正交平面中的平方代码。还有其他类型的网格状态,例如六角形代码。量子误差校正(QEC)对于网格状态至关重要。最近,耶鲁大学的研究人员提出了QEC方案,并为网格状态进行了实验[1]。在这篇评论中,我将讨论| GKP⟩状态,其分布,网格状态的QEC协议以及人们最近的实验。
理解黑洞的基本动力结构对于阐明黑洞物理学的基本问题的新阐明至关重要[1]。黑洞通常被认为是由一般相对论捕获的;然而,在黑洞的地平线附近,量子理论在物理事件上也具有显着的效果[2]。在黑洞的事件范围内,量子和相对论理论的结合出现的一种重要效果是通过发射所谓的鹰辐射来蒸发黑洞[3]。此描述使我们达到了深刻的身体直觉,在Minkowski时空中的真空状态不再是Rindler时空中观察者的真空状态,这是由于黑洞的存在。这些研究提出了一些矛盾和悖论,例如信息悖论[4-8]。解决这些悖论需要更好地理解相对论理论的量子描述[1,9 - 12]。此外,更好地了解黑洞附近的量子过程可能会为整个宇宙的一致图片铺平道路[13]。
拓扑绝缘体的准一维纳米线是基于马约拉纳费米子的量子计算方案的超导混合架构的候选结构。本文研究了低温下选择性生长的 Bi 2 Te 3 拓扑绝缘体纳米带。纳米带定义在硅 (111) 衬底上深蚀刻的 Si 3 N 4 /SiO 2 纳米沟槽中,然后通过分子束外延进行选择性区域生长过程。选择性区域生长有利于提高器件质量,因为不需要进行后续制造来塑造纳米带。在这些无意 n 掺杂的 Bi 2 Te 3 拓扑绝缘体纳米带的扩散传输区域中,通过分析角度相关的通用电导波动谱来识别电子轨迹。当样品从垂直磁场方向倾斜到平行磁场方向时,这些高频电导调制与低频 Aharonov-Bohm 型振荡合并,后者源自沿纳米带周边的拓扑保护表面状态。对于 500 nm 宽的霍尔棒,在垂直磁场方向上可识别出低频 Shubnikov-de Haas 振荡。这揭示了一个拓扑、高迁移率、2D 传输通道,部分与材料本体分离。
摘要条件相互信息(CMI)i(a:c | b)量化给定a和c之间共享的相关量b。因此,它是多部分场景中两分相关性的更一般的量化符,在量子马尔可夫链理论中起着重要作用。在本文中,我们对CMI在不同温度下在两个浴场之间放置在两个浴场之间的量子链的非平衡状态(NESS)中的CMI行为进行了详细研究。这些结果用于阐明弹道和扩散运输方式背后的机制,以及它们如何影响链条不同部分之间的相关性。我们对在边界处受到本地Lindblad散射剂的一维纤维链的特定情况进行研究。此外,该链在每个地点还受到自一致的储层,这些储层用于调整弹道和扩散之间的传输。结果,我们发现CMI独立于弹道制度中的链尺寸L,但在扩散情况下用L衰减代数。最后,我们还展示了如何使用这种缩放来讨论非平衡稳态中局部热化的概念。
摘要:量子信息的掩蔽意味着信息从子系统中隐藏,并分散到复合系统中。Modi 等人在 [Phys. Rev. Lett. 120, 230501 (2018)] 中证明,对于某些非正交量子态的受限集,掩蔽是正确的,而对于任意量子态,掩蔽是不可能的。在本文中,我们分别讨论了掩蔽纯态和混合态中编码的量子信息的问题。基于已建立的纯态集被算子掩蔽的必要条件和充分条件,我们发现存在一组四个不能被掩蔽的状态,这意味着掩蔽未知的纯态是不可能的。我们构造了一个掩蔽器 S ♯ 并获得了其最大可掩蔽集,从而对上述 Modi 论文中提出的猜想给出了肯定的回答。我们还证明了纯态的正交(或线性无关)子集可以通过等距(或注入)进行掩蔽。将纯态的情况概括起来,我们引入了一组混合态的可掩蔽性,并证明混合态的交换子集可以被等距 S ⋄ 掩蔽,但任何算子都不可能掩蔽所有混合态。我们还分别找到了等距 S ♯ 和 S ⋄ 的混合态的最大可掩蔽集。
法国国家信息技术研究所 (Inria) 和德国人工智能研究中心 (DFKI) 签署人工智能合作谅解备忘录 在《亚琛条约》签署一周年之际,法国国家信息技术研究所 (Inria) 和德国人工智能研究中心 (DFKI) 签署了谅解备忘录。 签署仪式将于萨尔布吕肯的 Power4Production 创新实验室举行,萨尔州总理托比亚斯·汉斯 (Tobias Hans) 和莱茵兰-普法尔茨州联邦政府代表兼欧洲媒体和数字事务国务秘书海克·拉布 (Heike Raab) 出席。 凯泽斯劳滕、巴黎、萨尔布吕肯,2020 年 1 月 22 日 法国和德国于 2019 年 1 月 22 日签署的《亚琛条约》为法德合作注入了新的动力,并强调了在人工智能 (AI) 领域的伙伴关系。 在此框架内,Inria 和 DFKI 现已同意通过构建和正式化合作,大大加强在人工智能领域的合作。因此,Inria 和 DFKI 将于今天签署谅解备忘录。部长 Tobias Hans 表示:“DFKI 和 INRIA 已经就欧洲人工智能和数字主权的机遇和挑战制定了共同愿景。这两家国际知名研究机构的密切合作是朝着使萨尔州和法国成为欧洲驱动力和人工智能等未来技术中心迈出的开创性一步。这一发展还表明,萨尔州作为 IT 中心具有特殊的意义和吸引力,我们旨在加强与法国合作伙伴合作的法国战略正在取得成果。”国务秘书海克·拉布 (Heike Raab) 指出:“德国和法国也非常重视人工智能研究和开发。人工智能造福人类是这一共同价值观的核心。我很高兴 DFKI 和 Inria 作为两家国际上非常重要的研究机构,将通过签署这份谅解备忘录进一步加强合作。对于凯泽斯劳滕基地来说,这意味着在机器学习和深度学习领域的合作将得到扩大。这些是 DFKI 在凯泽斯劳滕已经拥有国际认可的专业知识的主题,通过合作将进一步加强这些专业知识。” Inria 首席执行官 Bruno Sportisse 表示:“DFKI 和 Inria 之间的这份谅解备忘录体现了继《亚琛条约》和最近的图卢兹会议之后,法德在欧洲动态中就人工智能展开合作的势头。我们致力于人工智能的国家计划促进了两国研究机构之间的双边伙伴关系。DFKI 和 Inria 对人工智能有着相似而开放的愿景,这为加强我们在双边和欧洲层面上的具体项目上的伙伴关系铺平了新的机会。”DFKI 首席执行官 Antonio Krüger 解释说:“Inria 和 DFKI 之间的这份谅解备忘录表明,我们不仅正在讨论法德人工智能合作,而且还在积极协调研究和确定联合项目。我们期待着合作,因为我们将法国和德国对人工智能的愿景结合在一起,造福人民和社会。在这两个国家,都已启动了填补“人工智能”空白的项目
• 受体在未甲基化状态与甲基化状态下表现出更大的 ns 时间尺度动态 • 甲基化螺旋 2 可能参与增加未甲基化状态的灵活性 • 动态发生在受体的两种状态下的多个时间尺度上 摘要 细菌化学受体以阵列形式排列,螺旋受体排列为二聚体的三聚体,与组氨酸激酶 CheA 和偶联蛋白 CheW 偶联。配体与外部结构域结合会抑制激酶活性,从而导致游泳行为改变。对持续刺激的适应涉及特定谷氨酸残基的可逆甲基化和去甲基化。然而,信号通过螺旋受体传播到组氨酸激酶的确切机制仍然难以捉摸。受体胞质结构域的动力学被认为在信号转导中起重要作用,目前的模型提出受体不同区域存在逆动态变化。我们假设适应性修饰(甲基化)通过稳定部分有序域来控制动力学,这反过来又调节激酶 CheA 的结合。我们使用固态 NMR 研究了化学受体甲基化和非甲基化状态之间的动力学差异。未甲基化受体 (CF4E) 相对于甲基化模拟物 (CF4Q) 显示出更大的灵活性。甲基化螺旋 1 (MH1) 在甲基化受体中已被证明是灵活的。我们的分析表明,除了 MH1 之外,甲基化螺旋 2 在未甲基化受体中也变得灵活。此外,我们已经证明受体的两种状态都具有刚性区域和具有中间动力学的片段。研究中用于识别动态区域的策略适用于具有内在无序性和跨多个时间尺度的动力学的广泛蛋白质和蛋白质复合物。
摘要:本文研究了一类特殊态,即通过局域量子操作与经典通信(LQCC)协议得到的Werner态(WLQCC态)中的量子失谐,将量化量子失谐的19个参数简化为4个关于Werner态和量子失谐性质的参数。在正交射影测度条件下,解析地导出了WLQCC态中量子失谐的解析表达式。得到了WLQCC态中量子失谐的一些性质,特别是量子失谐与表征WLQCC态的参数之间的变分关系。通过数值计算,对比了LQCC协议前后Werner态中的量子失谐,发现任何WLQCC态中的量子失谐都不可能超过原Werner态中的量子失谐。
2015年秋季班级/时间:星期一1:30-4:10地点:TBD讲师:Kathy Pegion博士地点:研究厅260电子邮件:kpegion@gmu.edu课程学分:3网站:3网站:TBD Office小时:TBD概述和动机全球模型是用于制作气候和预测气候的主要工具。对这些模型中未包含的内容的深入了解,它们如何代表各种空间和时间尺度上的气候变异性以及如何运行地球系统模型的介绍是从事气候研究所需的基本技能。该课程将是实验室和讨论的重点。学生将阅读和讨论IPCC报告和相关期刊文章的部分。学生还将学习如何运行地球系统模型并从季节性预测和气候预测中评估数据。目标