超分辨率医学图像可帮助医生提供更准确的诊断。在许多情况下,计算机断层扫描 (CT) 或磁共振成像 (MRI) 技术在一次检查期间会捕获多个扫描 (模式),这些扫描 (模式) 可以联合使用 (以多模态方式) 来进一步提高超分辨率结果的质量。为此,我们提出了一种新颖的多模态多头卷积注意模块来超分辨率 CT 和 MRI 扫描。我们的注意模块使用卷积运算对多个连接的输入张量执行联合空间通道注意,其中核 (感受野) 大小控制空间注意的减少率,卷积滤波器的数量控制通道注意的减少率。我们引入了多个注意头,每个头具有不同的感受野大小,对应于空间注意的特定减少率。我们将多模态多头卷积注意力 (MMHCA) 集成到两个深度神经架构中以实现超分辨率,并对三个数据集进行了实验。我们的实证结果表明,我们的注意力模块优于超分辨率中使用的最先进的注意力机制。此外,我们进行了一项消融研究,以评估注意力模块中涉及的组件的影响,例如输入的数量或头部的数量。我们的代码可在 https://github.com/lilygeorgescu/MHCA 免费获取。
GDM包装。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 Counculate.gdm.deviance。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4格式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 GDM。4 GDM。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 gdm.crssvalidation。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 gdm.partition.deviance。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 GDM. Transform。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 14 GDM.Varimp。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 16 gdmdissim。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。13 GDM. Transform。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 GDM.Varimp。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 16 gdmdissim。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。14 GDM.Varimp。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 gdmdissim。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>18 iSplineXtracttract。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>19 plot.gdm。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>20个情节。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>21 predict.gdm。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>西南23。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 25 subamam.SitePair。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>西南23。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>25 subamam.SitePair。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。25摘要。gdm。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26
apca。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 ASCA。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 3 ASCA_FIT 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。2 ASCA。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 ASCA_FIT。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 ASCA_PLOTS。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 ASCA_RESULTS。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9块。data.frame。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10热。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 11蜡烛。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 12个dummyCode。 。 。 。 。 。 。 。 。 。 。 。 。 。10热。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11蜡烛。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12个dummyCode。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 Extended.Model.Frame。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 limmpca。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 Model.Frame.asca。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 MSCA。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 PCANOVA 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 17个pcanova_plots。 。 。16 PCANOVA。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17个pcanova_plots。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>19 pcananova_ sensults。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>20个永久性。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>21中心。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22时图。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。23 UPDATE_WITHOUT_FACTOR。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24
给定种和关系,完成给出通用 C*-代数 从所有 𝜌 𝑛 中,获取 C* 代数上的状态 𝜌 实现 𝑝(𝑎, 𝑏|𝑥, 𝑦) GNS 构造给出交换算子量子模型。
摘要:使用多个自主机器人完成复杂的任务是智能系统和集体机器人技术的一个高度相关的主题。在本文中,描述了一组异质自我利益机器人自组织的游戏理论框架。所提出的方法可以使任务分配和动态奖励分布最大化预期的总收益,从而确保了多机器人联盟的有效性。该解决方案基于与核心的模糊合作游戏理论。精确的耕作场景被用作复杂任务的一个例子。在这种情况下,属于两个不同类别的几个机器人相互交互以分发现场处理任务,以满足每个任务的给定边缘成本,与联盟的回报相对应。仿真结果表明,在搜索能够提供给定回报的联盟结构时,解决方案的融合。可以主张模糊联盟游戏理论在集体机器人技术中的自组织。
我们在新颖地应用了既定的生态方法,以量化和比较简短的学生文本语料库中的语言多样性。构造的响应(CRS)是一种常见的评估形式,但由于文本长度限制而引起的传统词汇多样性方法很难评估。在本文中,我们检查了生态多样性度量和秩序技术的实用性,以通过与传统文本分析方法并行应用这些方法来量化短文中的差异,以列为先前研究的大学生CRS的语料库。CR是在两个时间点(定时),三种类型的高级机构(类型)以及三个级别的学生理解(思维)中收集的。使用以前的工作,我们能够预测,我们将根据思维观察到最大的差异,然后是时间安排,并且没有指望基于类型的差异,从而使我们能够测试这些方法对语料库进行分类检查的实用性。我们发现,将CRS相互比较的生态多样性指标(Whittaker的Beta,物种离职率和Bray -Curtis差异)是有益的,并且与我们在类别和其他文本分析方法中的差异和其他文本分析方法的差异非常相关。其他生态措施,包括香农和辛普森的多样性,衡量单个CR中语言的多样性。另外,通过将复杂的单词频率矩阵减少到二维图,定制提供了语料库的有意义的视觉表示。使用顺序图,我们能够观察CR语料库中的模式,以进一步支持我们对数据集的预测。这项工作为衡量短文中语言多样性的新方法建立了可用于检查学生语言差异以及可能与分类数据的关联的差异。
随着通信技术的升级和量子计算的飞速发展,经典的数字签名方案面临着前所未有的挑战,对量子数字签名的研究势在必行。本文提出一种基于五量子比特纠缠态受控量子隐形传态的多代理签名方案。该方案采用量子傅里叶变换作为加密方法对消息进行加密,与量子一次一密相比提高了量子效率。采用满足量子比特阈值量子纠错要求的五量子比特最大纠缠态作为量子通道,保证了方案的稳定性。安全性分析表明,该方案具有不可伪造、不可否认的特点,能够抵抗截获重发攻击。
• 股票选择:DMAS 的股票配置今年迄今落后于全球发达股票。利率变动速度损害了团队的一些增长型头寸,特别是对 Polen 和 Edgewood 的主动增长投资,团队此后都已退出。收益已分散到更侧重于防御性和价值风险的股票头寸中。投资组合中剩余的增长风险是摩根大通大型增长,经理在增长领域采取了更防御性的方法。此外,欧洲周期性更强的地区(欧洲金融 ETF、Hartford International Value 和被动德国)的头寸在今年早些时候因乌克兰意外入侵而被抛售而降低了回报。在俄罗斯入侵后,该团队迅速减少了在欧洲的头寸规模,这有助于挽救自那时以来的业绩。
我们研究了从舌头的超声图像和嘴唇的视频图像中进行多说话人语音识别。我们在模态语音的图像数据上训练我们的系统,并在两种说话模式的匹配测试集上进行评估:无声语音和模态语音。我们观察到,从图像数据中进行的无声语音识别表现不如模态语音识别,这可能是因为训练和测试之间的说话模式不匹配。我们使用解决领域不匹配的技术来提高无声语音识别性能,例如 fMLLR 和无监督模型自适应。我们还从话语持续时间和发音空间大小方面分析了无声语音和模态语音的特性。为了估计发音空间,我们计算从超声舌头图像中提取的舌头样条的凸包。总体而言,我们观察到无声语音的持续时间比模态语音的持续时间长,并且无声语音比模态语音覆盖的发音空间小。尽管这两个特性在各种说话模式下都具有统计显著性,但它们与语音识别的单词错误率并不直接相关。索引词:无声语音界面、无声语音、超声舌成像、视频唇成像、发音语音识别