摘要。使用统计建模可以从数据得出结论时有两种文化。一个人假设数据是由给定随机数据模型生成的。另一个使用算法模型,并将数据机理视为未知的。统计社区已致力于几乎独家使用数据模型。这一承诺导致了无关紧要的理论,可疑的结论,并阻止了统计学家从事各种有趣的当前问题。在理论和实践中,算法建模在统计数据外迅速发展。 它既可以在大型复杂的数据集上使用,也可以用作更准确,更有信息的替代方法,可在较小的数据集上进行数据建模。 如果我们作为领域的目标是使用数据来解决问题,那么我们需要摆脱对数据模型的独家依赖并采用更多样化的工具。算法建模在统计数据外迅速发展。它既可以在大型复杂的数据集上使用,也可以用作更准确,更有信息的替代方法,可在较小的数据集上进行数据建模。如果我们作为领域的目标是使用数据来解决问题,那么我们需要摆脱对数据模型的独家依赖并采用更多样化的工具。
摘要 - 信息和通信技术(ICT)对环境的间接影响(无论是正面还是负面)在学术和工业文献中广泛讨论,尤其是在ICT4S社区中。但是,学术界缺乏关于如何评估它们的共识,尤其是在决策过程的背景下。本文研究了“净影响会计”方法是否适合决策,并建议采用替代方法。我们首先在环境决策的背景下阐明不同的方案。然后,我们评估它们在不同决策方案中的相关性。我们强调了他们对不确定性的反应不足,他们对解决方案而不是问题的关注,以及他们无法激发与环境过渡兼容的一系列决策。从系统思维中汲取见解,我们最终提出了可以组合的方法和工具,以更好地解决环境决策的复杂性。在整个论文中,我们开发了Vinted的案例研究(一个二手服装转售平台),以说明我们的论点。提倡一种更系统的方法的贡献,该方法通过采用混合方法,涵盖定性和定量观点。
“长期情景的目的不是预测会发生什么,”约克大学的合着者InêsMartins博士说。“而是要理解替代方案,因此避免了这些轨迹,这可能是最不可取的,并选择那些具有积极结果的轨迹。轨迹取决于我们选择的政策,这些决定是日常做出的。”马丁斯共同主持了模型分析,是IDIV和MLU的校友。
我们考虑了基于培养基刺激后响应波的测量值的粘性声材料的定量重建(例如,大量模量,密度)的逆问题。数值重建是通过迭代最小化算法进行的。首先,我们研究了算法在衰减模型不确定性方面的鲁棒性,也就是说,当使用不同的衰减模型分别用于模拟合成观察数据和反转时。其次,要处理由域周围墙边界产生的多个反射的数据集,我们使用复杂的频率进行反转,并表明它提供了一个强大的框架,可以减轻多种反射的界限。为了说明算法的效率,我们对超声成像实验的数值模拟进行了数值模拟,以重建包含高对比度特性的合成乳房样品。我们在两个和三个维度上进行实验,后者也可以证明大规模构造中的数值可行性。
获得的血友病A(AHA)是靶向因子VIII(FVIII)触发的罕见疾病。在先天性血友病A中,FVIII中和抑制剂是FVIII替代疗法后出现的同种抗体,而在AHA中,这些抑制剂是自身抗体。对各种人群的评估估计,获得的血友病A的年发病率约为百万分之一到两例[1,2]。大约80%的病例中的主要观察是皮下出血[3]。有症状的个体通常表现出广泛的染色性,大血肿和严重的粘膜出血,这可能导致医疗紧急情况。在一项涉及215例患者的综合调查中,有87%的人遇到了主要的出血事件,并发症与抑制剂有关,导致22%的死亡率[4]。在先前的研究中,总死亡率从31%到33%不等[5,6]。
这项工作解决了未知机器人过渡模型下多机器人协调的问题,以确保按时间窗口时间窗口逻辑指定的任务对用户定义的概率阈值满意。我们提出了一个BI级框架,该框架集成了(i)高级任务分配,其中根据机器人的估计任务完成概率和预期奖励分配任务,以及(ii)在履行分配的任务时,机器人独立优化了辅助奖励。要处理机器人动力学中的不确定性,我们的方法利用实时任务执行数据来迭代地完善预期的任务完成概率和奖励,从而无需显式机器人过渡模型即可自适应任务分配。我们从理论上验证了所提出的算法,表明任务分配具有很高的置信度达到所需的概率阈值。最后,我们通过全面的模拟证明了框架的有效性。
摘要:选择具有复杂,模棱两可和矛盾标准的选项是决策者的普遍挑战。选择最佳选项,他们通常使用多标准决策技术,其中专家管理有形和无形标准相互冲突的相对重要性来识别和评估可能的行动方案。做出决定涉及一个或多个人从一系列潜在选项中选择最佳选择。本研究提出了计算标准权重的多标准决策(MCDM)方法是替代方案。MCDM方法用于用于钢结构工程成本的风险评估。此问题包括许多标准和替代方案。MCDM方法在plithogenation集合下用于评估过程中的不确定性。灰色关系分析(GRA)是本研究中使用的MCDM方法,可对替代方案进行排名。收集了八个标准和八个替代方案以采用MCDM方法。灵敏度分析是在本研究中进行的。
摘要。本文提出了连续的时间最佳控制框架 - 在不确定性驱动方案中生成参考轨迹的工作。先前的工作[1]提出了一个自动驾驶汽车的离散时间随机代理。这些结果扩展到连续的时间,以确保在实时设置中发电机的鲁棒性。我们表明,连续时间的随机模型可以通过产生更好的结果来捕获信息的不确定性,从而限制了与离散方法相比,违反问题限制的风险。动态求解器提供更快的计算,而连续的时间模型比离散时间模型更适合多种多样的驾驶场景,因为它可以处理进一步的时间范围,这可以在城市驾驶场景的框架之外进行轨迹计划。
摘要在近年来,供应链优化已成为运营研究的主要主题。从计算和NAL溶液质量的角度概述了巨大的extline方法。但是,除了最佳之外,供应链的一个主要需求是不可思议的和对干扰的适应性。这项研究工作的目的是针对能够利用确定性和随机质量指数的详尽程序进行彻底的程序。然后选择了传送人问题作为案例研究,因为它代表了最基本的操作研究问题。基于单位操作的主要评估方法的适应,可提供良好的结果并允许正确识别批判性。此外,它证明,根据预期的偏差性质,在数百万个可能的替代方案中,最佳解决方案被认为是有限的子集。那么,在将来的研究中,值得扩展到更复杂的系统。
本文为基于可靠的状态空间可达性分析提供了一种安全自主导航的新方法。后者改善了基于顺序航路点(NSBSWR)框架[1]的已经提出的灵活导航策略[1],同时考虑了建模和/或感知方面的明显不同的不确定性。的确,NSBSWR是一个新兴的概念,可以利用其灵活性和通用性,以避免频繁的复杂轨迹的计划/重新计划。本文的主要贡献是引入可及性分析方案,作为可靠的风险评估和管理政策,以确保连续分配的航点之间安全自主导航。为此,使用间隔分析来传播影响车辆动力学到导航系统指出的不确定性。通过求解具有不确定变量和参数的普通微分方程,通过间隔泰勒串联扩展方法揭示了所有车辆潜在的可触及状态空间。根据可达集的获得的界限,对导航安全做出了决定。一旦捕获了碰撞风险,风险管理层就会采取行动以更新控制参数,以掌握关键情况并确保适当地达到Waypint,同时避免任何风险状态。几个模拟结果证明了在不确定性下总体导航的安全性,效率和鲁棒性。