Editor-in-Chief Felipe C. Albuquerque Deputy Editors David Fiorella Joshua Hirsch Commissioning Editor Michael Chen Associate Editors Jildaz Caroff Reade De Leacy Kyle Fargen Jens Fiehler Tao Hong Violiza Inoa Akash Kansagra Thabele Leslie-Mazwi Michael Levitt Mario Martinez-Galdamez Justin Mascitelli James Milburn Isil Saatci Edgar Samaniego Jai Shankar Jan Vargas Associate Editors, Basic Science Matthew Gounis David Steinman Assistant Editors, Social Media Dorothea Altschul Matthew Amans Jose Danilo Diestro Andrew Ducruet Matthew Fusco Assistant Editors, Technical Videos Peter Kan Maxim Mokin Editor Emeritus Robert Tarr SNIS Executive Director Marie Williams Denslow编辑办公室杂志神经干预手术杂志BMJ出版集团Ltd BMA House Tavistock Square,WC1H 9JR,英国E:info.jnis@bmj.com作者和审稿人的指南,可在线访问http:// jnis.bmj.com/ifora。文章必须以电子方式提交http://mc.manuscriptcentral.com/ jnis。作者保留版权,但要求授予JNIS独家许可以发布http://jnis.bmj.com/ifora/ifora/licence.dtl
本世纪正在呈现全球气候变化,并在环境条件下发生了重大变化,这可能会影响几种生物体的生长,发育和生存。反过来,这种影响会影响地球上生物的食物,饲料和饲料的可用性。反复发生的环境压力,例如热,干旱,冷,昏昏欲睡等。可能会造成巨大的收益率损失,对农作物的挑战以及对可持续粮食安全的担忧。在压力条件下基因表达的调节是植物为应对环境应力而采用的分子策略之一。microRNA(miRNA)在通过翻译抑制或由于mRNA的裂解而在控制基因表达方面起重要作用。此外,miRNA正在成为调节发育过程(包括生产力/产量以及对植物压力的反应)的较新候选者。通常,miRNA的靶标是转录因子和与胁迫反应相关的基因,从而影响植物的适应性潜力。miRNA(miR160-arf,miR159-myb和miR169-nFya)的组合参与了调节植物干旱下基因表达的调节。这些干旱响应性的miRNA被证明具有影响生理,生化和分子反应的影响,并用作作物植物基因操纵的候选物,以增强胁迫弹性。本综述提供了对miRNA的见解,这是一种应力,在植物(尤其是大米中)对环境压力的弹性中起着重要作用。据报道,miRNA可以控制关键的生物学过程,例如呼吸,光合作用,信号通路,衰老等,尤其是在压力条件下。已经讨论了利用基于miRNA的策略进行改进的一些局限性以及未来的观点。这些可能有助于理解miRNA的功能,这是基因调节网络的重要组成部分之一,这将促进农作物的遗传改善,从而获得多种应力并产生潜力。
神经退行性疾病是使人衰弱的状况,损害了患者的生活质量,代表着社会的巨大社会经济负担。虽然这些脑部疾病的根源在于常染色体遗传,但这些神经病理学中大多数的起源被熟悉。同样,解释脑功能的逐渐丧失的细胞和细胞底物也有待充分描述。的确,对脑神经变性的研究导致了一幅复杂的图像,由无数的变化过程组成,包括脑生物能骨损坏,广泛的神经炎症和信号通路的异常活性。在这种情况下,几项研究表明,内源性大麻素系统(ECS)及其主要信号枢纽,1型大麻素(CB1)受体在各种神经退行性疾病中改变了。但是,其中一些数据是冲突或描述不佳的。在这篇综述中,我们总结了三种代表性的脑疾病,阿尔茨海默氏症,帕金森氏症和亨廷顿疾病中EC和CB1受体信号的改变的发现,我们讨论了这些研究在理解Neuro脱发开发和进展中的相关性,并特别关注心血管素。值得注意的是,对神经退行性中EC的缺陷的分析需要更多的研究,因为我们对ECS功能的概念理解在过去几年中迅速发展,现在包括胶质细胞和亚细胞特异性CB1受体信号传导作为脑功能的关键参与者。
Giulia Lioi、Adolfo Veliz、Julie Coloigner、Quentin Duché、Simon Butet 等人。神经反馈对慢性中风患者有效连接网络的影响:一项探索性研究。《神经工程杂志》,2021 年,18 (5),第 056052 页。�10.1088/1741-2552/ac291e�。�hal-03354296�
星形胶质细胞在中枢神经系统稳态和神经炎症中起着关键作用。尽管在单细胞分析中取得了进步,但神经退行性疾病中反应性星形胶质细胞的异质性,尤其是整个物种的异质性。在这里,我们提出了来自阿尔茨海默氏症(AD)小鼠模型和多发性硬化症(MS)的187,000个星形胶质细胞的整合地图集,以及来自AD,MS和Parkinson's(PD)患者的438,000个星形胶质细胞。我们的分析确定了四个不同的小鼠星形胶质细胞簇,包括两个与疾病相关的星形胶质细胞(DAA)簇DAA1和DAA2。daa1表现出类似于急性刺激的反应,包括内毒素血症,而DAA2表示众所周知的AD风险基因。在AD模型中,DAA1和DAA2与淀粉样斑块表现出不同的空间关系。在人类中,我们确定了八个不同的星形胶质细胞簇,其中包括体内平衡和疾病相关的亚型。跨物种分析联系了与疾病相关的簇,同时也突出了其他人的表达。我们的星形胶质细胞地图集可通过用户友好的,可搜索的网站提供:http://research-pub.gene.com/astrotlas/。
我们考虑如何从两个时间和任意数量的量子比特的量子实验中分辨出与测量数据相关的时间顺序。我们定义了一个时间箭头推理问题。我们考虑在时间反转下对称或不对称的初始状态和最终状态的条件。我们通过伪密度矩阵时空状态表示时空测量数据。有一个完全正向和迹保持 (CPTP) 的正向过程和一个通过基于反转单元膨胀的替代恢复图获得的反向过程。对于不对称条件,协议确定数据是否与单元膨胀恢复图或 CPTP 图一致。对于对称条件,恢复图产生有效的 CPTP 图,实验可以在任一方向进行。我们还讨论了将该方法应用于 Leifer-Spekkens 或过程矩阵时空状态。
尽管已经提出了多巴胺系统的年龄差异基于横断面数据导致与年龄相关的认知下降,但最近的大型横截面研究报告说,仅报告衰老,多巴胺受体可用性和认知的相关性证据较弱。无论如何,纵向数据对于对多巴胺损失作为认知衰老的基础仍然具有强大的陈述至关重要。我们表现出D2/3多巴胺受体可用性的变化与健康的老年人超过5年的工作记忆变化之间的相关性(n = 128,基线时64至68岁)。Greater decline in D2/3 dopamine receptor availability in working memory-relevant regions (caudate, middle frontal cortex, hippocampus) was related to greater decline in working memory performance in individuals who exhibited working memory reductions across time ( n = 43; caudate: r s = 0.494; middle frontal cortex: r s = 0.506; hippocampus; r s = 0.423), but not in individuals who保持性能(n = 41;尾状:r s = 0.052;中额皮层:r s = 0.198;海马; r s = 0.076)。在Orbitrontal Cortex中未观察到偏链中的多巴胺 - 工作记忆链路,该链不属于核心工作记忆网络。我们的纵向分析支持了以下观点:多巴胺系统中与衰老相关的变化有助于衰老的工作记忆下降。
概括性理论是围绕一组变异来源组织的,称为方面。这些是差异的驱动因素(项目,评估者,观察)。方面是指类似的测量案例。该方面的每个级别称为条件。表现出感兴趣的系统变化(学生,对象,观察者)的测量对象是代表真实,系统变化的测量对象,而不是变异的来源。在此实验中,测量学科是学生(S),三个组成部分是任务(T),场合和评估者(R)。根据居登的布伦南(Brennan)(2019年)的说法,这些方面可以分为两个广泛的类别:分化和仪器方面的方面。Orluwene和Memory(2020)将区分方面进一步分为嵌套和穿越方面。 框架A和B“交叉”当每个方面都知道每个方面的水平Orluwene和Memory(2020)将区分方面进一步分为嵌套和穿越方面。框架A和B“交叉”当每个方面都知道每个方面的水平
摘要:由于它们在控制培养条件下对培养条件的卓越控制并与体内模型相比,由于它们在控制培养条件下的卓越控制并实现了实时观察,因此体外微血管模型的最新出现增强了组织工程中血管生成和血管形成的研究。然而,常规的二维(2D)观察和分析无法捕获三维(3D)形态动力学的异质性。为了克服这个问题,在本文中提出了一种新型的形态登记方法,用于通过将工程微血管的共聚焦显微镜与计算机视觉技术相结合,用于血管生成变形动力学的时空定量。使用微血管和周细胞的共培养系统,时空测量结果揭示了:(i)亲本血管和血管生成芽的不同变形模式以及生长/回归分区; (ii)周期定位和覆盖范围的时空变化; (iii)周细胞微使接触接触对局部缺口信号激活的增强作用,基质金属蛋白酶-1(MMP-1)的分布,血管生成动力学的异质性和形态成熟。该试验系统在血管生成过程中提供了共培养细胞的综合作用的特征,并在未来的有关血管形态发生的研究中实现了多模式数据的互动融合。
炎症相关淀粉样蛋白 A (AA) 淀粉样变性发生在一系列慢性疾病中,包括炎症性肠病、结核病、肝炎、遗传性炎症性疾病(如家族性地中海热)、癌症以及自身免疫性疾病,如类风湿性关节炎和血管炎 (Brunger et al, 2020 ; Lee et al, 2020 ; Papa and Lachmann, 2018 )。在这些情况下,细胞因子会刺激肝细胞合成并分泌血清淀粉样蛋白 A (SAA) 进入血液。在急性期反应期间,血清 SAA 可从基线浓度增加 1000 倍 (Sack, 2018 ; Ye and Sun, 2015 )。血清中 SAA 含量持续过高会妨碍其正常加工和清除,导致聚集的 AA 纤维成核和 AA 淀粉样蛋白的系统性沉积。淀粉样蛋白在脾脏、肾脏、肝脏和心脏中的沉积可能非常大,并导致危及生命的组织完整性破坏 (Chamling 等人,2021 年;Dubrey 等人,1996 年;Westermark 和 Westermark,2009 年)。越来越多的证据表明,先天免疫在蛋白质错误折叠疾病 (PMD) 的发病机制中发挥着重要作用 (Aguzzi,2022 年;Anders 和 Muruve,2011 年;Heneka 等人,2015 年;Heneka 等人,2014 年;Jang 等人,2019 年)。衔接蛋白 ASC(含有 caspase 募集结构域的凋亡相关斑点样蛋白)在阿尔茨海默病 (AD) 的发病机制中起着重要作用 (Dansokho 和 Heneka, 2018 ; Ising 等人, 2019 ; Venegas 等人, 2017 )。在过度表达淀粉样蛋白-β 前体蛋白和早老素-1 (APP/PS1; Pycard + / + 小鼠) 的小鼠中,海马内注射小胶质细胞衍生的 ASC 斑点会导致淀粉样蛋白 β (A β ) 交叉播种,而在 APP/
